Skip to main content

Pluripotent Stem Cells: Sources and Characterization

  • Chapter
  • First Online:
Tissue Engineering

Abstract

Pluripotent human stem cells, including embryonic stem (ES) cells and induced pluripotent stem (iPS) cells, hold tremendous promise as a source of progenitor cells and terminally differentiated cells in tissue engineering and regenerative medicine applications. Pluripotent stem cells are capable of unlimited self-renewal and have the ability to differentiate to clinically relevant cell types in each of the three germ lineages. ES cells were first derived from the inner cell mass of the blastocyst, while iPS cells can be generated from differentiated cells by stimulating expression of transcription factors that regulate pluripotency. This chapter discusses advances in deriving, characterizing, and culturing pluripotent human stem cell lines, with a focus on using these lines as a cell source for tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aasen T, Raya A, Barrero MJ, et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol. 2008;26:1276–84.

    Article  CAS  PubMed  Google Scholar 

  2. Adewumi O, Aflatoonian B, Ahrlund-Richter L, et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol. 2007; 25:803–16.

    Article  CAS  PubMed  Google Scholar 

  3. Agarwal S, Holton KL, Lanza R. Efficient differentiation of functional hepatocytes from human embryonic stem cells. Stem Cells. 2008;26:1117–27.

    Article  CAS  PubMed  Google Scholar 

  4. Amit M, Shariki C, Margulets V, et al. Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod. 2004;70:837–45.

    Article  CAS  PubMed  Google Scholar 

  5. Baker DE, Harrison NJ, Maltby E, et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol. 2007;25:207–15.

    Article  CAS  PubMed  Google Scholar 

  6. Beattie GM, Lopez AD, Bucay N, et al. Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells. 2005;23:489–95.

    Article  CAS  PubMed  Google Scholar 

  7. Bendall SC, Stewart MH, Menendez P, et al. IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature. 2007;448: 1015–21.

    Article  CAS  PubMed  Google Scholar 

  8. Byrne JA, Pedersen DA, Clepper LL, et al. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature. 2007;450:497–502.

    Article  CAS  PubMed  Google Scholar 

  9. Carpenter MK, Rosler ES, Fisk GJ, et al. Properties of four human embryonic stem cell lines maintained in a feeder-free culture system. Dev Dyn. 2004;229:243–58.

    Article  CAS  PubMed  Google Scholar 

  10. Cezar GG. Can human embryonic stem cells contribute to the discovery of safer and more effective drugs? Curr Opin Chem Biol. 2007;11:405–9.

    Article  CAS  PubMed  Google Scholar 

  11. Chang CW, Lai YS, Pawlik KM, et al. Polycistronic lentiviral vector for “hit and run” reprogramming of adult skin fibroblasts to induced pluripotent stem cells. Stem Cells. 2009;27:1042–9.

    Article  CAS  PubMed  Google Scholar 

  12. Chin AC, Fong WJ, Goh LT, et al. Identification of proteins from feeder conditioned medium that support human embryonic stem cells. J Biotechnol. 2007;130:320–8.

    Article  CAS  PubMed  Google Scholar 

  13. Chung Y, Klimanskaya I, Becker S, et al. Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell. 2008;2:113–7.

    Article  CAS  PubMed  Google Scholar 

  14. Claassen DA, MM Desler, A Rizzino. ROCK inhibition enhances the recovery and growth of cryopreserved human embryonic stem cells and human induced pluripotent stem cells. Mol Reprod Dev. 2009;76:722–32.

    Google Scholar 

  15. Cowan CA, Atienza J, Melton DA, et al. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science. 2005;309:1369–73.

    Article  CAS  PubMed  Google Scholar 

  16. Daadi MM, Steinberg GK. Manufacturing neurons from human embryonic stem cells: biological and regulatory aspects to develop a safe cellular product for stroke cell therapy. Regen Med. 2009;4:251–63.

    Article  CAS  PubMed  Google Scholar 

  17. De Coppi P, Bartsch Jr G, Siddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25:100–6.

    Article  PubMed  Google Scholar 

  18. Deng J, Shoemaker R, Xie B, et al. Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat Biotechnol. 2009;27: 353–60.

    Article  CAS  PubMed  Google Scholar 

  19. Dhara SK, Benvenisty N. Gene trap as a tool for genome annotation and analysis of X chromosome inactivation in human embryonic stem cells. Nucleic Acids Res. 2004; 32:3995–4002.

    Article  CAS  PubMed  Google Scholar 

  20. Dimos JT, Rodolfa KT, Niakan KK, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 2008;321: 1218–21.

    Article  CAS  PubMed  Google Scholar 

  21. Draper JS, Smith K, Gokhale P, et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol. 2004;22:53–4.

    Article  CAS  PubMed  Google Scholar 

  22. Ebert AD, Yu J, Rose Jr FF, et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature. 2009;457:277–80.

    Article  CAS  PubMed  Google Scholar 

  23. Eiselleova L, Peterkova I, Neradil J, et al. Comparative study of mouse and human feeder cells for human embryonic stem cells. Int J Dev Biol. 2008;52:353–63.

    Article  CAS  PubMed  Google Scholar 

  24. Ellerstrom C, Strehl R, Moya K, et al. Derivation of a xeno-free human embryonic stem cell line. Stem Cells. 2006; 24:2170–6.

    Article  PubMed  Google Scholar 

  25. Evans-Molina C, Vestermark GL, Mirmira RG. Development of insulin-producing cells from primitive biologic precursors. Curr Opin Organ Transplant. 2009;14:56–63.

    Article  PubMed  Google Scholar 

  26. Forsyth NR, Musio A, Vezzoni P, et al. Physiologic oxygen enhances human embryonic stem cell clonal recovery and reduces chromosomal abnormalities. Cloning Stem Cells. 2006;8:16–23.

    Article  CAS  PubMed  Google Scholar 

  27. French AJ, Adams CA, Anderson LS, et al. Development of human cloned blastocysts following somatic cell nuclear transfer with adult fibroblasts. Stem Cells. 2008;26:485–93.

    Article  CAS  PubMed  Google Scholar 

  28. Garcia-Gonzalo FR, Belmonte JC. Albumin-associated lipids regulate human embryonic stem cell self-renewal. PLoS ONE. 2008;3:e1384.

    Article  PubMed  Google Scholar 

  29. Gertow K, Przyborski S, Loring JF, et al. Isolation of human embryonic stem cell-derived teratomas for the assessment of pluripotency. Curr Protoc Stem Cell Biol. 2007;Chapter 1:Unit1B. 4.

    Google Scholar 

  30. Hanjaya-Putra D, Gerecht S. Vascular engineering using human embryonic stem cells. Biotechnol Prog. 2009;25:2–9.

    Article  CAS  PubMed  Google Scholar 

  31. Heiskanen A, Satomaa T, Tiitinen S, et al. N-glycolylneuraminic acid xenoantigen contamination of human embryonic and mesenchymal stem cells is substantially reversible. Stem Cells. 2007;25:197–202.

    Article  CAS  PubMed  Google Scholar 

  32. Hoffman LM, Hall L, Batten JL, et al. X-inactivation status varies in human embryonic stem cell lines. Stem Cells. 2005;23:1468–78.

    Article  CAS  PubMed  Google Scholar 

  33. Hotta A, Cheung AY, Farra N, et al. Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nat Methods. 2009;6:370–6.

    Article  CAS  PubMed  Google Scholar 

  34. Huangfu D, Osafune K, Maehr R, et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol. 2008;26:1269–75.

    Article  CAS  PubMed  Google Scholar 

  35. Inniss K, Moore H. Mediation of apoptosis and proliferation of human embryonic stem cells by sphingosine-1-phosphate. Stem Cells Dev. 2006;15:789–96.

    Article  CAS  PubMed  Google Scholar 

  36. James D, Levine AJ, Besser D, et al. TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development. 2005;132: 1273–82.

    Article  CAS  PubMed  Google Scholar 

  37. Kaji K, Norrby K, Paca A, et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature. 2009;458:771–5.

    Article  CAS  PubMed  Google Scholar 

  38. Keirstead HS, Nistor G, Bernal G, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci. 2005;25:4694–705.

    Article  CAS  PubMed  Google Scholar 

  39. Lensch MW, Schlaeger TM, Zon LI, et al. Teratoma formation assays with human embryonic stem cells: a rationale for one type of human-animal chimera. Cell Stem Cell. 2007;1:253–8.

    Article  CAS  PubMed  Google Scholar 

  40. Lerou PH, Yabuuchi A, Huo H, et al. Human embryonic stem cell derivation from poor-quality embryos. Nat Biotechnol. 2008;26:212–4.

    Article  CAS  PubMed  Google Scholar 

  41. Levenstein ME, Ludwig TE, Xu RH, et al. Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells. 2006;24:568–74.

    Article  CAS  PubMed  Google Scholar 

  42. Loh YH, Agarwal S, Park IH, et al. Generation of induced pluripotent stem cells from human blood. Blood. 2009; 113:5476–9.

    Article  CAS  PubMed  Google Scholar 

  43. Ludwig TE, Levenstein ME, Jones JM, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol. 2006;24:185–7.

    Article  CAS  PubMed  Google Scholar 

  44. Marion RM, Strati K, Li H, et al. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell. 2009;4:141–54.

    Article  CAS  PubMed  Google Scholar 

  45. Martin MJ, Muotri A, Gage F, et al. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med. 2005;11:228–32.

    Article  CAS  PubMed  Google Scholar 

  46. Meissner A, Wernig M, Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol. 2007;25:1177–81.

    Article  CAS  PubMed  Google Scholar 

  47. Mitalipova MM, Rao RR, Hoyer DM, et al. Preserving the genetic integrity of human embryonic stem cells. Nat Biotechnol. 2005;23:19–20.

    Article  CAS  PubMed  Google Scholar 

  48. Nakagawa M, Koyanagi M, Tanabe K, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008;26:101–6.

    Article  CAS  PubMed  Google Scholar 

  49. Nury D, Neri T, Puceat M. Human embryonic stem cells and cardiac cell fate. J Cell Physiol. 2009;218:455–9.

    Article  CAS  PubMed  Google Scholar 

  50. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007; 448:313–7.

    Article  CAS  PubMed  Google Scholar 

  51. Pan G, Tian S, Nie J, et al. Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell. 2007;1:299–312.

    Article  CAS  PubMed  Google Scholar 

  52. Park IH, Arora N, Huo H, et al. Disease-specific induced pluripotent stem cells. Cell. 2008;134:877–86.

    Article  CAS  PubMed  Google Scholar 

  53. Park JH, Kim SJ, Oh EJ, et al. Establishment and maintenance of human embryonic stem cells on STO, a permanently growing cell line. Biol Reprod. 2003;69:2007–14.

    Article  CAS  PubMed  Google Scholar 

  54. Park IH, Zhao R, West JA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008;451:141–6.

    Article  CAS  PubMed  Google Scholar 

  55. Pebay A, Wong RC, Pitson SM, et al. Essential roles of sphingosine-1-phosphate and platelet-derived growth factor in the maintenance of human embryonic stem cells. Stem Cells. 2005;23:1541–8.

    Article  CAS  PubMed  Google Scholar 

  56. Prowse AB, McQuade LR, Bryant KJ, et al. Identification of potential pluripotency determinants for human embryonic stem cells following proteomic analysis of human and mouse fibroblast conditioned media. J Proteome Res. 2007;6: 3796–807.

    Article  CAS  PubMed  Google Scholar 

  57. Pyle AD, Lock LF, Donovan PJ. Neurotrophins mediate human embryonic stem cell survival. Nat Biotechnol. 2006; 24:344–50.

    Article  CAS  PubMed  Google Scholar 

  58. Revazova ES, Turovets NA, Kochetkova OD, et al. Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells. 2007;9:432–49.

    Article  CAS  PubMed  Google Scholar 

  59. Revazova ES, Turovets NA, Kochetkova OD, et al. HLA homozygous stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells. 2008;10: 11–24.

    Article  CAS  PubMed  Google Scholar 

  60. Rosler ES, Fisk GJ, Ares X, et al. Long-term culture of human embryonic stem cells in feeder-free conditions. Dev Dyn. 2004;229:259–74.

    Article  CAS  PubMed  Google Scholar 

  61. Saha S, Ji L, de Pablo JJ, et al. TGFbeta/Activin/Nodal pathway in inhibition of human embryonic stem cell differentiation by mechanical strain. Biophys J. 2008;94:4123–33.

    Article  CAS  PubMed  Google Scholar 

  62. Salli U, Fox TE, Carkaci-Salli N, et al. Propagation of undifferentiated human embryonic stem cells with nano-liposomal ceramide. Stem Cells Dev. 2009;18:55–65.

    Google Scholar 

  63. Shi Y, Desponts C, Do JT, et al. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell. 2008;3:568–74.

    Article  CAS  PubMed  Google Scholar 

  64. Skottman H, Dilber MS, Hovatta O. The derivation of clinical-grade human embryonic stem cell lines. FEBS Lett. 2006;580:2875–8.

    Article  CAS  PubMed  Google Scholar 

  65. Soh BS, Song CM, Vallier L, et al. Pleiotrophin enhances clonal growth and long-term expansion of human embryonic stem cells. Stem Cells. 2007;25:3029–37.

    Article  CAS  PubMed  Google Scholar 

  66. Soldner F, Hockemeyer D, Beard C, et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell. 2009;136:964–77.

    Article  CAS  PubMed  Google Scholar 

  67. Stacey GN, Cobo F, Nieto A, et al. The development of ‘feeder’ cells for the preparation of clinical grade hES cell lines: challenges and solutions. J Biotechnol. 2006;125: 583–8.

    Article  CAS  PubMed  Google Scholar 

  68. Stojkovic P, Lako M, Stewart R, et al. An autogeneic feeder cell system that efficiently supports growth of undifferentiated human embryonic stem cells. Stem Cells. 2005;23: 306–14.

    Article  CAS  PubMed  Google Scholar 

  69. Stojkovic M, Stojkovic P, Leary C, et al. Derivation of a human blastocyst after heterologous nuclear transfer to donated oocytes. Reprod Biomed Online. 2005;11:226–31.

    Article  PubMed  Google Scholar 

  70. Strelchenko N, Verlinsky O, Kukharenko V, et al. Morula-derived human embryonic stem cells. Reprod Biomed Online. 2004;9:623–9.

    Article  PubMed  Google Scholar 

  71. Tada M, Takahama Y, Abe K, et al. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol. 2001;11:1553–8.

    Article  CAS  PubMed  Google Scholar 

  72. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  CAS  PubMed  Google Scholar 

  73. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  74. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  CAS  PubMed  Google Scholar 

  75. Unger C, Skottman H, Blomberg P, et al. Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum Mol Genet. 2008;17:R48–53.

    Article  CAS  PubMed  Google Scholar 

  76. Vallier L, Alexander M, Pedersen RA. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci. 2005;118:4495–509.

    Article  CAS  PubMed  Google Scholar 

  77. Vallier L, Mendjan S, Brown S, et al. Activin/Nodal signalling maintains pluripotency by controlling Nanog expression. Development. 2009;136:1339–49.

    Article  CAS  PubMed  Google Scholar 

  78. Wang L, Schulz TC, Sherrer ES, et al. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood. 2007;110: 4111–9.

    Article  CAS  PubMed  Google Scholar 

  79. Wang G, Zhang H, Zhao Y, et al. Noggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layers. Biochem Biophys Res Commun. 2005;330:934–42.

    Article  CAS  PubMed  Google Scholar 

  80. Watanabe K, Ueno M, Kamiya D, et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol. 2007;25:681-6.

    Google Scholar 

  81. Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 2007;448:318–24.

    Article  CAS  PubMed  Google Scholar 

  82. Woltjen K, Michael IP, Mohseni P, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 2009;458:766–70.

    Article  CAS  PubMed  Google Scholar 

  83. Wong RC, Tellis I, Jamshidi P, et al. Anti-apoptotic effect of sphingosine-1-phosphate and platelet-derived growth factor in human embryonic stem cells. Stem Cells Dev. 2007; 16:989–1001.

    Article  CAS  PubMed  Google Scholar 

  84. Xiao L, Yuan X, Sharkis SJ. Activin A maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem Cells. 2006;24:1476–86.

    Article  CAS  PubMed  Google Scholar 

  85. Xu C, Inokuma MS, Denham J, et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol. 2001;19:971–4.

    Article  CAS  PubMed  Google Scholar 

  86. Xu C, Rosler E, Jiang J, et al. Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells. 2005;23:315–23.

    Article  CAS  PubMed  Google Scholar 

  87. Xu RH, Peck RM, Li DS, et al. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods. 2005;2:185–90.

    Article  CAS  PubMed  Google Scholar 

  88. Yang L, Soonpaa MH, Adler ED, et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature. 2008;453:524–8.

    Article  CAS  PubMed  Google Scholar 

  89. Yu J, Hu K, Smuga-Otto K, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science. 2009;

    Google Scholar 

  90. Yu J, Vodyanik MA, He P, et al. Human embryonic stem cells reprogram myeloid precursors following cell-cell fusion. Stem Cells. 2006;24:168–76.

    Article  PubMed  Google Scholar 

  91. Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.

    Article  CAS  PubMed  Google Scholar 

  92. Zhang X, Stojkovic P, Przyborski S, et al. Derivation of human embryonic stem cells from developing and arrested embryos. Stem Cells. 2006;24:2669–76.

    Article  CAS  PubMed  Google Scholar 

  93. Zhang J, Wilson GF, Soerens AG, et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res. 2009;104:e30–41.

    Article  CAS  PubMed  Google Scholar 

  94. Zhou H, Wu S, Joo JY, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell. 2009;4:381–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks members of his lab, especially Samira Azarin, for helpful discussions. Support for this chapter was provided by the National Science Foundation grant EFRI-0735903 and National Institute of Biomedical Imaging and Bioengineering grant R01EB007534.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean P. Palecek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Palecek, S.P. (2011). Pluripotent Stem Cells: Sources and Characterization. In: Pallua, N., Suscheck, C. (eds) Tissue Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02824-3_4

Download citation

Publish with us

Policies and ethics