Skip to main content

Engineering Cartilage Tissue

  • Chapter
  • First Online:
Tissue Engineering

Abstract

The objective of this chapter is to address timely work in the area of cartilage tissue engineering, with a specific focus on the regeneration of articular cartilage. Many approaches have been used for the engineering of articular cartilage with a wide range of materials formed into meshes, sponges, and hydrogels and with a range of cell sources including chondrocytes, fibroblasts, and stem cells. At present, the current state of the art is the use of mesenchymal stem cells encapsulated in synthetic hydrogels; an approach which overcomes many of the limitations present in previous material formulations and in the definition of a clinically relevant and widely available acceptable cell source for tissue repair. Considerable advances have been made in these areas to generate cartilage constructs with near native properties and histological features. With the addition of various stimulatory cues (molecules, materials, mechanical loading), we are now poised to develop functional cartilage replacement tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adkisson HD, Gillis MP, Davis EC, Maloney W, Hruska KA. In vitro generation of scaffold independent neocartilage. Clin Orthop Relat Res. 2001;391(Suppl):S280–94.

    Article  PubMed  Google Scholar 

  2. Akizuki S, Mow VC, Muller F, Pita JC, Howell DS, Manicourt DH. Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus. J Orthop Res. 1986;4(4):379–92.

    Article  CAS  PubMed  Google Scholar 

  3. Allemann F, Mizuno S, Eid K, Yates KE, Zaleske D, Glowacki J. Effects of hyaluronan on engineered articular cartilage extracellular matrix gene expression in 3-dimensional collagen scaffolds. J Biomed Mater Res. 2001;55(1): 13–9.

    Article  CAS  PubMed  Google Scholar 

  4. Angele P, Kujat R, Nerlich M, Yoo J, Goldberg V, Johnstone B. Engineering of osteochondral tissue with bone marrow mesenchymal progenitor cells in a derivatized hyaluronan-gelatin composite sponge. Tissue Eng. 1999;5(6):545–54.

    Article  CAS  PubMed  Google Scholar 

  5. Angele P, Schumann D, Nerlich M, Kujat R. Enhanced chondrogenesis of mesenchymal progenitor cells loaded in tissue engineering scaffolds by cyclic, mechanical compression. Trans Orthop Res Soc. 2004;29:835.

    Google Scholar 

  6. Angele P, Yoo JU, Smith C, et al. Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res. 2003;21(3):451–7.

    Article  CAS  PubMed  Google Scholar 

  7. Anseth KS, Burdick JA. New directions in photopolymerizable biomaterials. MRS Bull. 2002;27:130–8.

    CAS  Google Scholar 

  8. Archer CW, Dowthwaite GP, Francis-West PH. Development of synovial joints. Birth Def Res. 2003;69:144–55.

    Article  CAS  Google Scholar 

  9. Ateshian GA, Hung CT. Patellofemoral joint biomechanics and tissue engineering. Clin Orthop Relat Res. 2005;436: 81–90.

    Article  PubMed  Google Scholar 

  10. Athanasiou KA, Zhu CF, Wang X, Agrawal CM. Effects of aging and dietary restriction on the structural integrity of rat articular cartilage. Ann Biomed Eng. 2000;28(2):143–9.

    Article  CAS  PubMed  Google Scholar 

  11. Aufderheide AC, Athanasiou KA. Assessment of a bovine co-culture, scaffold-free method for growing meniscus-shaped constructs. Tissue Eng. 2007;13(9):2195–205.

    Article  CAS  PubMed  Google Scholar 

  12. Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials. 2004;25(16):3211–22.

    Article  CAS  PubMed  Google Scholar 

  13. Bal BS, Rahaman M, Kuroki K, Cook JL. In vivo comparison of tissue engineered osteochondral plugs using allograft bone, trabecular metal, and bioactive glass substrates. Trans ORS. 2007;32:645.

    Google Scholar 

  14. Below S, Arnoczky SP, Dodds J, Kooima C, Walter N. The split-line pattern of the distal femur: a consideration in the orientation of autologous cartilage grafts. J Arthros Rel Surg. 2002;18(6):613–7.

    Article  Google Scholar 

  15. Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982;30(1):215–24.

    Article  CAS  PubMed  Google Scholar 

  16. Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: Influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng. 2006;93(6): 1152–63.

    Article  CAS  PubMed  Google Scholar 

  17. Brittberg M, Nilsson A, Lindahl A, Ohlsson C, Peterson L. Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin Orthop. 1996;326:270–83.

    Article  PubMed  Google Scholar 

  18. Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive sub-cultivation and following cryopreservation. J Cell Biochem. 1997;64: 278–94.

    Article  CAS  PubMed  Google Scholar 

  19. Bryant SJ, Anseth KS. The effects of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels. Biomaterials. 2001;22(6):619–26.

    Article  CAS  PubMed  Google Scholar 

  20. Bryant SJ, Anseth KS. Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. J Biomed Mater Res A. 2003;64(1): 70–9.

    Article  PubMed  CAS  Google Scholar 

  21. Burdick JA, Chung C, Jia X, Randolph MA, Langer R. Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules. 2005;6(1):386–91.

    Article  CAS  PubMed  Google Scholar 

  22. Burdick JA, Peterson AJ, Anseth KS. Conversion and temperature profiles during the photoinitiated polymerization of thick orthopaedic biomaterials. Biomaterials. 2001;22(13): 1779–86.

    Article  CAS  PubMed  Google Scholar 

  23. Buschmann MD, Gluzband YA, Grodzinsky AJ, Hunziker EB. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci. 1995;108(Pt 4):1497–508.

    CAS  PubMed  Google Scholar 

  24. Buschmann MD, Gluzband YA, Grodzinsky AJ, Kimura JH, Hunziker EB. Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J Orthop Res. 1992;10(6):745–58.

    Article  CAS  PubMed  Google Scholar 

  25. Byers BA, Mauck RL, Chiang IE, Tuan RS. Transient exposure to transforming growth factor beta 3 under serum-free conditions enhances the biomechanical and biochemical maturation of tissue-engineered cartilage. Tissue Eng. 2008;14(11):1821–34.

    Article  CAS  Google Scholar 

  26. Caligaris M, Ateshian GA. Effects of sustained interstitial fluid pressurization under migrating contact area, and boundary lubrication by synovial fluid, on cartilage friction. Osteoarthr Cartil. 2008;16(10):1220–7.

    Article  CAS  PubMed  Google Scholar 

  27. Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med. 2001;7(6):259–64.

    Article  CAS  PubMed  Google Scholar 

  28. Carver SE, Heath CA. Increasing extracellular matrix production in regenerating cartilage with intermittent physiological pressure. Biotechnol Bioeng. 1999;62(2):166–74.

    Article  CAS  PubMed  Google Scholar 

  29. Caterson EJ, Li WJ, Nesti LJ, Albert T, Danielson K, Tuan RS. Polymer/alginate amalgam for cartilage-tissue engineering. Ann N Y Acad Sci. 2002;961:134–8.

    Article  CAS  PubMed  Google Scholar 

  30. Chang SC, Rowley JA, Tobias G, et al. Injection molding of chondrocyte/alginate constructs in the shape of facial implants. J Biomed Mater Res. 2001;55(4):503–11.

    Article  CAS  PubMed  Google Scholar 

  31. Chen H, Lawler J. Cartilage oligomeric matrix protein is a calcium-binding protein, and a mutation in its type 3 repeats causes conformational changes. J Biol Chem. 2001;275(34): 26538–44.

    Article  Google Scholar 

  32. Chung C, Burdick JA. Engineering cartilage tissue. Adv Drug Deliv Rev. 2008;60(2):243–62.

    Article  CAS  PubMed  Google Scholar 

  33. Chung C, Burdick JA. Enhanced chondrogenic differentiation of mesenchymal stem cells in hyaluronan hydrogels. Tissue Eng. 2008, Biomaterials. 2009;30:4287–96.

    Google Scholar 

  34. Chung C, Mesa J, Randolph MA, Yaremchuk M, Burdick JA. Influence of gel properties on neocartilage formation by auricular chondrocytes photoencapsulated in hyaluronic acid networks. J Biomed Mater Res A. 2006;77(3): 518–25.

    PubMed  Google Scholar 

  35. Eckstein F, Tieschky M, Faber SC, et al. Effect of physical exercise on cartilage volume and thickness in vivo: MR imaging study. Radiology. 1998;207(1):243–8.

    CAS  PubMed  Google Scholar 

  36. Elder SH, Goldstein SA, Kimura JH, Soslowsky LJ, Spengler DM. Chondrocyte differentiation is modulated by frequency and duration of cyclic compressive loading. Ann Biomed Eng. 2001;29(6):476–82.

    Article  CAS  PubMed  Google Scholar 

  37. Elisseeff J, McIntosh W, Fu K, Blunk BT, Langer R. Controlled-release of IGF-I and TGF-beta1 in a photopolymerizing hydrogel for cartilage tissue engineering. J Orthop Res. 2001;19(6):1098–104.

    Article  CAS  PubMed  Google Scholar 

  38. Elisseeff JH, Lee A, Kleinman HK, Yamada Y. Biological response of chondrocytes to hydrogels. Ann N Y Acad Sci. 2002;961:118–22.

    Article  CAS  PubMed  Google Scholar 

  39. Erickson GR, Gimble JM, Franklin DM, Rice HE, Awad H, Guilak F. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun. 2002;290(2):763–9.

    Article  CAS  PubMed  Google Scholar 

  40. Erickson IE, Chung C, Huang AH, Li RT, Burdick JA, Mauck RL. Hydrogel effects on long-term maturation of chondrocyte- and MSC-laden hydrogels. In: Transactions of the 54th annual meeting of the Orthopaedic Research Society. San Francisco, CA; 2008.

    Google Scholar 

  41. Erickson IE, Huang AH, Chung C, Li RT, Burdick JA, Mauck RL. Differential maturation and structure-function relationships in MSC and chondrocyte seeded hydrogels. Tissue Eng. 2008;15:1041–52.

    Google Scholar 

  42. Fehrenbacher A, Steck E, Rickert M, Roth W, Richter W. Rapid regulation of collagen but not metalloproteinase 1, 3, 13, 14 and tissue inhibitor of metalloproteinase 1, 2, 3 expression in response to mechanical loading of cartilage explants in vitro. Arch Biochem Biophys. 2003;410(1):39–47.

    Article  CAS  PubMed  Google Scholar 

  43. Felson DT, Zhang Y. An update on the epidemiology of knee and hip osteoarthritis with a view to prevention. Arthritis Rheum. 1998;41(8):1343–55.

    Article  CAS  PubMed  Google Scholar 

  44. Finger AR, Sargent CY, Dulaney KO, Bernacki SH, Loboa EG. Differential effects on messenger ribonucleic acid expression by bone marrow-derived human mesenchymal stem cells seeded in agarose constructs due to ramped and steady applications of cyclic hydrostatic pressure. Tissue Eng. 2007;13(6):1151–8.

    Article  CAS  PubMed  Google Scholar 

  45. Fitzgerald JB, Jin M, Dean D, Wood DJ, Zheng MH, Grodzinsky AJ. Mechanical compression of cartilage explants induces multiple time-dependent gene expression patterns and involves intracellular calcium and cyclic AMP. J Biol Chem. 2004;279(19):19502–11.

    Article  CAS  PubMed  Google Scholar 

  46. Flannery CR, Little CB, Hughes CE, Caterson B. Expression and activity of articular cartilage hyaluronidases. Biochem Biophys Res Commun. 1998;251(3):824–9.

    Article  CAS  PubMed  Google Scholar 

  47. Frankowski JJ, Watkins-Castillo S. Primary total knee and hip arthroplasty projections for the US population to the year 2030. American Academy of Orthopaedic Surgeons: Wiley; 2002.

    Google Scholar 

  48. Freed LE, Langer R, Martin I, Pellis NR, Vunjak-Novakovic G. Tissue engineering of cartilage in space. Proc Natl Acad Sci U S A. 1997;94(25):13885–90.

    Article  CAS  PubMed  Google Scholar 

  49. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol. 1976;4(5):267–74.

    CAS  PubMed  Google Scholar 

  50. Functional Tissue Engineering Conference Group. Evaluation criteria for musculoskeletal and craniofacial tissue engineering: a conference report. Tissue Eng A. 2008;14(12):2089–104.

    Google Scholar 

  51. Gepstein A, Arbel G, Blumenfeld I, Peled M, Livne E. Association of metalloproteinases, tissue inhibitors of matrix metalloproteinases, and proteoglycans with development, aging, and osteoarthritis processes in mouse temporomandibular joint. Histochem Cell Biol. 2003;120(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  52. Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, Vunjak-Novakovic G. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci U S A. 2007;104(27):11298–303.

    Article  CAS  PubMed  Google Scholar 

  53. Gilbert SJ. Developmental biology. 6th ed. New York: Sinauer Assoc.; 2000.

    Google Scholar 

  54. Gleghorn JP, Jones AR, Flannery CR, Bonassar LJ. Boundary mode frictional properties of engineered cartilaginous tissues. Eur Cell Mater. 2007;14:20–8; discussion 8–9.

    Google Scholar 

  55. Gomez S, Toffanin R, Bernstorff S, et al. Collagen fibrils are differently organized in weight-bearing and not-weight-bearing regions of pig articular cartilage. J Exp Zoo. 2000;287:346–52.

    Article  CAS  Google Scholar 

  56. Gooch KJ, Blunk T, Courter DL, et al. IGF-I and mechanical environment interact to modulate engineered cartilage development. Biochem Biophys Res Commun. 2001;286(5):909–15.

    Article  CAS  PubMed  Google Scholar 

  57. Gordon WJ, Conzemius MG, Birdsall E, et al. Chondroconductive potential of tantalum trabecular metal. J Biomed Mater Res B Appl Biomater. 2005;75(2):229–33.

    PubMed  Google Scholar 

  58. Grad S, Lee CR, Gorna K, Gogolewski S, Wimmer MA, Alini M. Surface motion upregulates superficial zone protein and hyaluronan production in chondrocyte-seeded three-dimensional scaffolds. Tissue Eng. 2005;11(1–2):249–56.

    Article  CAS  PubMed  Google Scholar 

  59. Grodzinsky AJ, Levenston ME, Jin M, Frank EH. Cartilage tissue remodeling in response to mechanical forces. Annu Rev Biomed Eng. 2000;2:691–713.

    Article  CAS  PubMed  Google Scholar 

  60. Guilak F, Butler DL, Goldstein SA. Functional tissue engineering: the role of biomechanics in articular cartilage repair. Clin Orthop. 2001;391(Suppl):S295–305.

    PubMed  Google Scholar 

  61. Guilak F, Sah RL, Setton LA. Physical regulation of cartilage metabolism. In: Mow VC, Hayes WC, editors. Basic orthopaedic biomechanics. 2nd ed. Philadelphia, PA: Lippincott-Raven; 1997. p. 179–207.

    Google Scholar 

  62. Hangody L, Kish G, Karpati Z, Szerb I, Udvarhelyi I. Arthroscopic autogenous osteochondral mosaicplasty for the treatment of femoral condylar articular defects. A preliminary report. Knee Surg Sports Traumatol Arthrosc. 1997;5(4):262–7.

    Article  CAS  PubMed  Google Scholar 

  63. Hardingham TE. The role of link-protein in the structure of cartilage proteoglycan aggregates. Biochem J. 1979;177(1):237–47.

    CAS  PubMed  Google Scholar 

  64. Harper MC. Viscous isoamyl 2-cyanoacrylate as an osseous adhesive in the repair of osteochondral osteotomies in rabbits. J Orthop Res. 1988;6(2):287–92.

    Article  CAS  PubMed  Google Scholar 

  65. Huang AH, Motlekar NA, Stein A, Diamond SL, Shore EM, Mauck RL. High-throughput screening for modulators of mesenchymal stem cell chondrogenesis. Ann Biomed Eng. 2008;36(11):1909–21.

    Article  PubMed  Google Scholar 

  66. Huang AH, Yeger-McKeever M, Stein A, Mauck RL. Tensile properties of engineered cartilage formed from chondrocyte- and MSC-laden hydrogels. Osteoarthr Cartil. 2008;16(9):1074–82.

    Article  CAS  PubMed  Google Scholar 

  67. Huang C-Y, Hagar K, Frost LE, Sun Y, Cheung HS. Effects of cyclic compressive loading on chondrogenesis of rabbit bone marrow-derived mesenchymal stem cells. Trans Orthop Res Soc. 2004;29:161.

    Google Scholar 

  68. Huang CY, Reuben PM, Cheung HS. Temporal expression patterns and corresponding protein inductions of early responsive genes in rabbit bone marrow-derived mesenchymal stem cells under cyclic compressive loading. Stem Cells. 2005;23(8):1113–21.

    Article  CAS  PubMed  Google Scholar 

  69. Huang C-Y, Stankiewicz A, Ateshian GA, Flatow EL, Bigliani LU, Mow VC. Tensile and compressive stiffness of human glenohumeral cartilage under finite deformation. Proc Bioeng Conf ASME BED. 1999;42:469–70.

    Google Scholar 

  70. Hui TY, Cheung KM, Cheung WL, Chan D, Chan BP. In vitro chondrogenic differentiation of human mesenchymal stem cells in collagen microspheres: Influence of cell seeding density and collagen concentration. Biomaterials. 2008;29(22):3201–12.

    Article  CAS  PubMed  Google Scholar 

  71. Hung CT, Lima EG, Mauck RL, et al. Anatomically shaped osteochondral constructs for articular cartilage repair. J Biomech. 2003;36(12):1853–64.

    Article  PubMed  Google Scholar 

  72. Hunter CJ, Imler SM, Malaviya P, Nerem RM, Levenston ME. Mechanical compression alters gene expression and extracellular matrix synthesis by chondrocytes cultured in collagen I gels. Biomaterials. 2002;23(4):1249–59.

    Article  CAS  PubMed  Google Scholar 

  73. Insall J. The Pridie debridement operation for osteoarthritis of the knee. Clin Orthop Relat Res. 1974;101:61–7.

    PubMed  Google Scholar 

  74. Jadin KD, Bae WC, Schumacher BL, Sah RL. Three-dimensional (3-D) imaging of chondrocytes in articular cartilage: growth-associated changes in cell organization. Biomaterials. 2007;28(2):230–9.

    Article  CAS  PubMed  Google Scholar 

  75. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res. 1998;238:265–72.

    Article  CAS  PubMed  Google Scholar 

  76. Jones AR, Gleghorn JP, Hughes CE, et al. Binding and localization of recombinant lubricin to articular cartilage surfaces. J Orthop Res. 2007;25(3):283–92.

    Article  CAS  PubMed  Google Scholar 

  77. Kempson GE. Age-related changes in the tensile properties of human articular cartilage: a comparative study between the femoral head of the hip joint and the talus of the ankle joint. Biochim Biophys Acta. 1991;1075(3):223–30.

    CAS  PubMed  Google Scholar 

  78. Kisiday J, Jin M, Grodzinsky AJ. Effects of dynamic compressive loading duty cycle on in vitro conditioning of chondroctye seeded peptide and agarose scaffolds. Trans ORS. 2002;28:216.

    Google Scholar 

  79. Kisiday J, Jin M, Kurz B, et al. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci U S A. 2002;99(15):9996–10001.

    Article  CAS  PubMed  Google Scholar 

  80. Kisiday JD, Kopesky PW, Evans CH, Grodzinsky AJ, McIlwraith CW, Frisbie DD. Evaluation of adult equine bone marrow- and adipose-derived progenitor cell chondrogenesis in hydrogel cultures. J Orthop Res. 2008;26(3):322–31.

    Article  CAS  PubMed  Google Scholar 

  81. Klein TJ, Chaudhry M, Bae WC, Sah RL. Depth-dependent biomechanical and biochemical properties of fetal, newborn, and tissue-engineered articular cartilage. J Biomech. 2007;40(1):182–90.

    Article  PubMed  Google Scholar 

  82. Knudson CB, Knudson W. Hyaluronan and CD44: modulators of chondrocyte metabolism. Clin Orthop Relat Res. 2004;427(Suppl):S152–62.

    Article  PubMed  Google Scholar 

  83. Knutsen G, Engebretsen L, Ludvigsen TC, et al. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am. 2004;86A(3):455–64.

    Google Scholar 

  84. Kogan G, Soltes L, Stern R, Gemeiner P. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett. 2007;29(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  85. Kopesky PW, Lee CSD, Miller RE, Kisiday JD, Frisbie DD, Grodzinsky AJ. Comparable matrix production by adult equine marrow-derived MSCs and primary chondrocytes in a self-assembling peptide hydrogel: effect of age and growth factors. In: Transactions of the 53rd annual meeting of the Orthopaedic Research Society. San Francisco, CA; 2007:255.

    Google Scholar 

  86. Koyama E, Shibukawa Y, Nagayama M, et al. A distinct cohort of progenitor cells participates in synovial Joint and articular cartilage formation during mouse limb skeletogenesis. Dev Biol. 2008;316(1):62–73.

    Article  CAS  PubMed  Google Scholar 

  87. Krishnan R, Kopacz M, Ateshian GA. Experimental verification of the role of interstitial fluid pressurization in cartilage lubrication. J Orthop Res. 2004;22(3):565–70.

    Article  PubMed  Google Scholar 

  88. Kutty JK, Cho E, Soo Lee J, Vyavahare NR, Webb K. The effect of hyaluronic acid incorporation on fibroblast spreading and proliferation within PEG-diacrylate based semi-interpenetrating networks. Biomaterials. 2007;28(33): 4928–38.

    Article  CAS  PubMed  Google Scholar 

  89. Lee DA, Noguchi T, Frean SP, Lees P, Bader DL. The influence of mechanical loading on isolated chondrocytes seeded in agarose constructs. Biorheology. 2000;37(1–2):149–61.

    CAS  PubMed  Google Scholar 

  90. Li Y, Toole BP, Dealy CN, Kosher RA. Hyaluronan in limb morphogenesis. Dev Biol. 2007;305(2):411–20.

    Article  CAS  PubMed  Google Scholar 

  91. Lima EG, Bian L, Ng KW, et al. The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-beta3. Osteoarthr Cartil. 2007;15(9):1025–33.

    Article  CAS  PubMed  Google Scholar 

  92. Lima EG, Mauck RL, Han SH, et al. Functional tissue engineering of chondral and osteochondral constructs. Biorheology. 2004;41(3–4):577–90.

    PubMed  Google Scholar 

  93. Liu Y, Shu XZ, Prestwich GD. Osteochondral defect repair with autologous bone marrow-derived mesenchymal stem cells in an injectable, in situ, cross-linked synthetic extracellular matrix. Tissue Eng. 2006;12(12):3405–16.

    Article  CAS  PubMed  Google Scholar 

  94. Lutolf MP, Lauer-Fields JL, Schmoekel HG, et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci U S A. 2003;100(9): 5413–8.

    Article  CAS  PubMed  Google Scholar 

  95. Majumdar MK, Wang E, Morris EA. BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1. J Cell Physiol. 2001;189(3):275–84.

    Article  CAS  PubMed  Google Scholar 

  96. Malaviya P, Butler DL, Boivin GP, et al. An in vivo model for load-modulated remodeling in the rabbit flexor tendon. J Orthop Res. 2000;18:116–25.

    Article  CAS  PubMed  Google Scholar 

  97. Marcacci M, Berruto M, Brocchetta D, et al. Articular cartilage engineering with Hyalograft C: 3-year clinical results. Clin Orthop Relat Res. 2005;435:96–105.

    Article  PubMed  Google Scholar 

  98. Mardones RM, Reinholz GG, Fitzsimmons JS, et al. Development of a biologic prosthetic composite for cartilage repair. Tissue Eng. 2005;11(9–10):1368–78.

    Article  CAS  PubMed  Google Scholar 

  99. Martin I, Padera RF, Vunjak-Novakovic G, Freed LE. In vitro differentiation of chick embryo bone marrow stromal cells into cartilaginous and bone-like tissues. J Orthop Res. 1998;16(2):181–9.

    Article  CAS  PubMed  Google Scholar 

  100. Mauck RL, Byers BA, Yuan X, Tuan RS. Regulation of cartilaginous ECM gene transcription by chondrocytes and MSCs in 3D culture in response to dynamic loading. Biomech Model Mechanobiol. 2007;6(1–2):113–25.

    Article  CAS  PubMed  Google Scholar 

  101. Mauck RL, Hung CT, Ateshian GA. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering. J Biomech Eng. 2003;125(5):602–14.

    Article  PubMed  Google Scholar 

  102. Mauck RL, Nicoll SB, Seyhan SL, Ateshian GA, Hung CT. Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng. 2003;9(4):597–611.

    Article  CAS  PubMed  Google Scholar 

  103. Mauck RL, Soltz MA, Wang CC, et al. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng. 2000;122(3):252–60.

    Article  CAS  PubMed  Google Scholar 

  104. Mauck RL, Wang CC, Oswald ES, Ateshian GA, Hung CT. The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthr Cartil. 2003;11(12):879–90.

    Article  CAS  PubMed  Google Scholar 

  105. Mauck RL, Yuan X, Tuan RS. Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthr Cartil. 2006;14(2):179–89.

    Article  CAS  PubMed  Google Scholar 

  106. Menzel EJ, Farr C. Hyaluronidase and its substrate hyaluronan: biochemistry, biological activities and therapeutic uses. Cancer Lett. 1998;131(1):3–11.

    Article  CAS  PubMed  Google Scholar 

  107. Mikic B, Isenstein AL, Chhabra AB. Mechanical modulation of cartilage structure and function during embryogenesis of the chick. Ann Biomed Eng. 2004;32(1):18–25.

    Article  PubMed  Google Scholar 

  108. Mikic B, Johnson TL, Chhabra AB, Schalet BJ, Wong M, Hunziker EB. Differential effects of embryonic immobilization on the development of fibrocartilaginous skeletal elements. J Rehabil Res Dev. 2000;37(2):127–33.

    CAS  PubMed  Google Scholar 

  109. Mitrovic D. Development of the articular cavity in paralyzed chick embryos and in chick limb buds cultured on chorioallantoic membranes. Acta Anat. 1982;112(4): 313–24.

    Article  Google Scholar 

  110. Miyanishi K, Trindade MC, Lindsey DP, et al. Effects of hydrostatic pressure and transforming growth factor-beta 3 on adult human mesenchymal stem cell chondrogenesis in vitro. Tissue Eng. 2006;12(6):1419–28.

    Article  CAS  PubMed  Google Scholar 

  111. Morales TI, Hascall VC. Correlated metabolism of proteoglycans and hyaluronic acid in bovine cartilage organ cultures. J Biol Chem. 1988;263(8):3632–8.

    CAS  PubMed  Google Scholar 

  112. Moretti M, Wendt D, Dickinson SC, et al. Effects of in vitro preculture on in vivo development of human engineered cartilage in an ectopic model. Tissue Eng. 2005;11(9–10): 1421–8.

    Article  CAS  PubMed  Google Scholar 

  113. Mouw JK, Connelly JT, Wilson CG, Michael KE, Levenston ME. Dynamic compression regulates the expression and synthesis of chondrocyte-specific matrix molecules in bone marrow stromal cells. Stem Cells. 2007;25(3):655–63.

    Article  CAS  PubMed  Google Scholar 

  114. Mow VC, Wang CC, Hung CT. The extracellular matrix, interstitial fluid and ions as a mechanical signal transducer in articular cartilage. Osteoarthr Cartil. 1999;7(1):41–58.

    Article  CAS  PubMed  Google Scholar 

  115. Mueller MB, Tuan RS. Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cells. Arthritis Rheum. 2008;58(5):1377–88.

    Article  CAS  PubMed  Google Scholar 

  116. Nehrer S, Breinan HA, Ramappa A, et al. Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro. J Biomed Mater Res. 1997;38(2):95–104.

    Article  CAS  PubMed  Google Scholar 

  117. Nettles DL, Vail TP, Morgan MT, Grinstaff MW, Setton LA. Photocrosslinkable hyaluronan as a scaffold for articular cartilage repair. Ann Biomed Eng. 2004;32(3):391–7.

    Article  PubMed  Google Scholar 

  118. Ng KW, Kugler LE, Doty SB, Ateshian GA, Hung CT. Scaffold degradation elevates the collagen content and dynamic compressive modulus in engineered articular cartilage. Osteoarthr Cartil. 2008;17(2):220–7.

    Google Scholar 

  119. Ng KW, Mauck RL, Statman LY, Lin EY, Ateshian GA, Hung CT. Dynamic deformational loading results in selective application of mechanical stimulation in a layered, tissue-engineered cartilage construct. Biorheology. 2006;43(3–4):497–507.

    PubMed  Google Scholar 

  120. Ng KW, Wang CC, Mauck RL, et al. A layered agarose approach to fabricate depth-dependent inhomogeneity in chondrocyte-seeded constructs. J Orthop Res. 2005;23(1): 134–41.

    Article  PubMed  Google Scholar 

  121. Nicoll SB, Wedrychowska A, Smith NR, Bhatnagar RS. Modulation of proteoglycan and collagen profiles in human dermal fibroblasts by high density micromass culture and treatment with lactic acid suggests change to a chondrogenic phenotype. Connect Tissue Res. 2001;42(1):59–69.

    Article  CAS  PubMed  Google Scholar 

  122. Nixon AJ, Fortier LA, Williams J, Mohammed H. Enhanced repair of extensive articular defects by insulin-like growth factor-I-laden fibrin composites. J Orthop Res. 1999;17(4):475–87.

    Article  CAS  PubMed  Google Scholar 

  123. Noth U, Osyczka AM, Tuli R, Hickok NJ, Danielson KG, Tuan RS. Multilineage mesenchymal differentiation potential of human trabecular bone derived cells. J Orthop Res. 2002;20(5):1060–9.

    Article  PubMed  Google Scholar 

  124. O’Driscoll SW, Keeley FW, Salter RB. The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion. An experimental investigation in the rabbit. J Bone Joint Surg Am. 1986;68(7):1017–35.

    PubMed  Google Scholar 

  125. Pacifici M, Koyama E, Iwamoto M. Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries. Birth Def Res. 2005;75:237–48.

    Article  CAS  Google Scholar 

  126. Pacifici M, Koyama E, Shibukawa Y, et al. Cellular and molecular mechanisms of synovial joint and articular cartilage formation. Ann NY Acad Sci. 2006;1068:74–86.

    Article  CAS  Google Scholar 

  127. Park SY, Hung CT, Ateshian GA. Mechanical response of bovine articular cartilage under dynamic unconfined compression loading at physiological stress levels. J Biomech. 2003;12(1):391–400.

    Google Scholar 

  128. Park Y, Lutolf MP, Hubbell JA, Hunziker EB, Wong M. Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair. Tissue Eng. 2004;10(3–4):515–22.

    Article  CAS  PubMed  Google Scholar 

  129. Park YD, Tirelli N, Hubbell JA. Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks. Biomaterials. 2003;24(6):893–900.

    Article  CAS  PubMed  Google Scholar 

  130. Pei M, Seidel J, Vunjak-Novakovic G, Freed LE. Growth factors for sequential cellular de- and re-differentiation in tissue engineering. Biochem Biophys Res Commun. 2002;294(1):149–54.

    Article  CAS  PubMed  Google Scholar 

  131. Pei M, Solchaga LA, Seidel J, et al. Bioreactors mediate the effectiveness of tissue engineering scaffolds. Faseb J. 2002;16(12):1691–4.

    CAS  PubMed  Google Scholar 

  132. Pelttari K, Winter A, Steck E, et al. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum. 2006;54(10):3254–66.

    Article  CAS  PubMed  Google Scholar 

  133. Pitsillides AA. Identifying and characterizing the joint cavity-forming cell. Cell Biochem Funct. 2003;21: 235–40.

    Article  CAS  PubMed  Google Scholar 

  134. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  CAS  PubMed  Google Scholar 

  135. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276(5309):71–4.

    Article  CAS  PubMed  Google Scholar 

  136. Quinn TM, Schmid P, Hunziker EB, Grodzinsky AJ. Proteoglycan deposition around chondrocytes in agarose culture: construction of a physical and biological interface for mechanotransduction in cartilage. Biorheology. 2002;39(1–2):27–37.

    CAS  PubMed  Google Scholar 

  137. Ramamurthi A, Vesely I. Evaluation of the matrix-synthesis potential of crosslinked hyaluronan gels for tissue engineering of aortic heart valves. Biomaterials. 2005;26(9): 999–1010.

    Article  CAS  PubMed  Google Scholar 

  138. Rice MA, Anseth KS. Controlling cartilaginous matrix evolution in hydrogels with degradation triggered by exogenous addition of an enzyme. Tissue Eng. 2007;13(4): 683–91.

    Article  CAS  PubMed  Google Scholar 

  139. Rooney P, Kumar S, Ponting J, Wang M. The role of hyaluronan in tumour neovascularization (review). Int J Cancer. 1995;60(5):632–6.

    Article  CAS  PubMed  Google Scholar 

  140. Rotter N, Bonassar LJ, Tobias G, Lebl M, Roy AK, Vacanti CA. Age dependence of biochemical and biomechanical properties of tissue-engineered human septal cartilage. Biomaterials. 2002;23(15):3087–94.

    Article  CAS  PubMed  Google Scholar 

  141. Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 1999;20(1):45–53.

    Article  CAS  PubMed  Google Scholar 

  142. Sahoo S, Chung C, Khetan S, Burdick JA. Hydrolytically degradable hyaluronic acid hydrogels with controlled temporal structures. Biomacromolecules. 2008;9(4):1088–92.

    Article  CAS  PubMed  Google Scholar 

  143. Schaefer D, Martin I, Jundt G, et al. Tissue-engineered composites for the repair of large osteochondral defects. Arthritis Rheum. 2002;46(9):2524–34.

    Article  PubMed  Google Scholar 

  144. Schinagl RM, Gurskis D, Chen AC, Sah RL. Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J Orthop Res. 1997;15(4): 499–506.

    Article  CAS  PubMed  Google Scholar 

  145. Sengers BG, Van Donkelaar CC, Oomens CW, Baaijens FP. The local matrix distribution and the functional development of tissue engineered cartilage, a finite element study. Ann Biomed Eng. 2004;32(12):1718–27.

    Article  CAS  PubMed  Google Scholar 

  146. Sherwood JK, Riley SL, Palazzolo R, et al. A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials. 2002;23(24):4739–51.

    Article  CAS  PubMed  Google Scholar 

  147. Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood. 1991;78:55–62.

    CAS  PubMed  Google Scholar 

  148. Slevin M, Kumar S, Gaffney J. Angiogenic oligosaccharides of hyaluronan induce multiple signaling pathways affecting vascular endothelial cell mitogenic and wound healing responses. J Biol Chem. 2002;277(43):41046–59.

    Article  CAS  PubMed  Google Scholar 

  149. Smeds KA, Pfister-Serres A, Miki D, et al. Photocrosslinkable polysaccharides for in situ hydrogel formation. J Biomed Mater Res. 2001;54(1):115–21.

    Article  CAS  PubMed  Google Scholar 

  150. Soltz MA, Ateshian GA. Interstitial fluid pressurization during confined compression cyclical loading of articular cartilage. Ann Biomed Eng. 2000;28(2):150–9.

    Article  CAS  PubMed  Google Scholar 

  151. Soulhat J, Buschmann MD, Shirazi-Adl A. A fibril-network-reinforced biphasic model of cartilage in unconfined compression. J Biomech Eng. 1999;121(3):340–7.

    Article  CAS  PubMed  Google Scholar 

  152. Steadman JR, Rodkey WG, Briggs KK. Microfracture to treat full-thickness chondral defects: surgical technique, rehabilitation, and outcomes. J Knee Surg. 2002;15(3):170–6.

    PubMed  Google Scholar 

  153. Stern R. Devising a pathway for hyaluronan catabolism: are we there yet? Glycobiology. 2003;13(12):105R–15.

    Article  CAS  PubMed  Google Scholar 

  154. Stern R, Kogan G, Jedrzejas MJ, Soltes L. The many ways to cleave hyaluronan. Biotechnol Adv. 2007;25:537–57.

    Article  CAS  PubMed  Google Scholar 

  155. Takahashi I, Nuckolls GH, Takahashi K, et al. Compressive force promotes sox9, type II collagen and aggrecan and inhibits IL-1beta expression resulting in chondrogenesis in mouse embryonic limb bud mesenchymal cells. J Cell Sci. 1998;111(Pt 14):2067–76.

    CAS  PubMed  Google Scholar 

  156. Tallheden T, Dennis JE, Lennon DP, Sjogren-Jansson E, Caplan AI, Lindahl A. Phenotypic plasticity of human articular chondrocytes. J Bone Joint Surg. 2003;85A Suppl 2:93–100.

    Google Scholar 

  157. Terraciano V, Hwang N, Moroni L, et al. Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells. 2007;25(11):2730–8.

    Google Scholar 

  158. Toole BP. Hyaluronan in morphogenesis. Semin Cell Dev Biol. 2001;12(2):79–87.

    Article  CAS  PubMed  Google Scholar 

  159. Vunjak-Novakovic G, Martin I, Obradovic B, et al. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res. 1999;17(1):130–8.

    Article  CAS  PubMed  Google Scholar 

  160. Waldman SD, Spiteri CG, Grynpas MD, Pilliar RM, Kandel RA. Long-term intermittent shear deformation improves the quality of cartilaginous tissue formed in vitro. J Orthop Res. 2003;21(4):590–6.

    Article  CAS  PubMed  Google Scholar 

  161. Wang CC, Deng JM, Ateshian GA, Hung CT. An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression. J Biomech Eng. 2002;124(5):557–67.

    Article  PubMed  Google Scholar 

  162. Wang CC, Guo XE, Sun D, Mow VC, Ateshian GA, Hung CT. The functional environment of chondrocytes within cartilage subjected to compressive loading: a theoretical and experimental approach. Biorheology. 2002;39(1–2):11–25.

    PubMed  Google Scholar 

  163. Wang DA, Varghese S, Sharma B, et al. Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration. Nat Mater. 2007;6(5):385–92.

    Article  CAS  PubMed  Google Scholar 

  164. Weightman B. Tensile fatigue of human articular cartilage. J Biomech. 1976;9:193–200.

    Article  CAS  PubMed  Google Scholar 

  165. West JL, Hubbell JA. Photopolymerized hydrogel materials for drug-delivery applications. React Polym. 1995;25(2–3):139–47.

    Article  CAS  Google Scholar 

  166. Williamson AK, Chen AC, Masuda K, Thonar EJ, Sah RL. Tensile mechanical properties of bovine articular cartilage: variations with growth and relationships to collagen network components. J Orthop Res. 2003;21(5):872–80.

    Article  CAS  PubMed  Google Scholar 

  167. Williamson AK, Chen AC, Sah RL. Compressive properties and function-composition relationships of developing bovine articular cartilage. J Orthop Res. 2001;19(6): 1113–21.

    Article  CAS  PubMed  Google Scholar 

  168. Williamson AK, Masuda K, Thonar EJ, Sah RL. Growth of immature articular cartilage in vitro: correlated variation of tensile biomechanical and collagen network properties. Tissue Eng. 2003;9(4):625–34.

    Article  CAS  PubMed  Google Scholar 

  169. Worster AA, Brower-Toland BD, Fortier LA, Bent SJ, Williams J, Nixon AJ. Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-beta1 in monolayer and insulin-like growth factor-I in a three-dimensional matrix. J Orthop Res. 2001;19(4):738–49.

    Article  CAS  PubMed  Google Scholar 

  170. Wu JJ, Woods PE, Eyre DR. Identification of cross-linking sites in bovine cartilage type IX collagen reveals an antiparallel type II–type IX molecular relationship and type IX to type IX bonding. J Biol Chem. 1992;287(32): 23007–14.

    Google Scholar 

  171. Yates KE, Allemann F, Glowacki J. Phenotypic analysis of bovine chondrocytes cultured in 3D collagen sponges: effect of serum substitutes. Cell Tissue Bank. 2005;6(1): 45–54.

    Article  CAS  PubMed  Google Scholar 

  172. Zheng MH, Willers C, Kirilak L, et al. Matrix-induced autologous chondrocyte implantation (MACI): biological and histological assessment. Tissue Eng. 2007;13(4): 737–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Mauck, R.L., Burdick, J.A. (2011). Engineering Cartilage Tissue. In: Pallua, N., Suscheck, C. (eds) Tissue Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02824-3_23

Download citation

Publish with us

Policies and ethics