Skip to main content

Biomimetic Scaffolds in Tissue Engineering

  • Chapter
  • First Online:
Tissue Engineering

Abstract

Tissue engineering combines our knowledge of medicine, life sciences, and engineering, and biomimetics within tissue engineering is employed in scaffold design, by both mimicking and improving upon the extracellular matrix structure and chemistry.

The current generation of biomaterials for tissue engineering aims to influence cellular behavior through various means, such as scaffold design, cell-based therapies, and factor-based tissue engineering. Biomimetic scaffold design is a promising approach to positively affect cell response and to successfully engineer the replacement tissues. This chapter serves as an introduction to the field of biomimetic scaffolds in tissue engineering, as well as an overview of a number of state-of-the-art techniques currently being employed to engineer various tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Girand PG, Cavalcanti-Adam EA, Kemkemer R, Spatz JP. Cellular chemomechanics at interfaces: sensing, integration and response. Soft Matter 2007;3:307–26.

    Google Scholar 

  2. Barrera DA, Zylstra E, Lansbury PT, Langer R. Synthesis and RGD peptide modification of a new biodegradable copolymer – poly(lactic acid-co-lysine). J Am Chem Soc. 1993;115:11010–1.

    Article  CAS  Google Scholar 

  3. Cook AD, Hrkach JS, Gao NN, Johnson IM, Pajvani UB, Cannizzaro SM, et al. Characterization and development of RGD-peptide-modified poly(lactic acid-co-lysine) as an interactive, resorbable biomaterial. J Biomed Mater Res. 1997;35:513–23.

    Article  CAS  PubMed  Google Scholar 

  4. Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science. 1997;277:1232–7.

    Article  CAS  Google Scholar 

  5. Dravida S, Gaddipati S, Griffith M, Merrett K, Madhira SL, Sangwan VS, et al. A biomimetic scaffold for culturing limbal stem cells: a promising alternative for clinical transplantation. J Tissue Eng Regen Med. 2008;2:263–71.

    Article  CAS  PubMed  Google Scholar 

  6. Elsdale T, Bard J. Collagen substrata for studies on cell behavior. J Cell Biol. 1972;54:626–37.

    Article  CAS  PubMed  Google Scholar 

  7. Fratzl P, Gupta HS, Paschalis EP, Roschger P. Structure and mechanical quality of the collagen-mineral nano-composite in bone. J Mater Chem. 2004;14:2115–23.

    Article  CAS  Google Scholar 

  8. Gao JM, Niklason L, Langer R. Surface hydrolysis of poly(glycolic acid) meshes increases the seeding density of vascular smooth muscle cells. J Biomed Mater Res. 1998; 42:417–24.

    Article  CAS  PubMed  Google Scholar 

  9. Grinnell F. Cell-collagen interactions – overview. Methods Enzymol. 1982;82:499–503.

    Article  CAS  PubMed  Google Scholar 

  10. Hall H. Modified fibrin hydrogel matrices: both, 3D-scaffolds and local and controlled release systems to stimulate angiogenesis. Curr Pharma Des. 2007;13:3597–607.

    Article  CAS  Google Scholar 

  11. Hammond PT. Recent explorations in electrostatic multilayer thin film assembly. Colloid Interface Sci. 1999;4: 430–42.

    Article  CAS  Google Scholar 

  12. Hench LL. Biomaterials. Science. 1980;208:826–31.

    Article  CAS  PubMed  Google Scholar 

  13. Hench LL, Polak JM. Viewpoint: third-generation biomedical materials. Science. 2002;295:1014–7.

    Article  CAS  PubMed  Google Scholar 

  14. Hu YH, Winn SR, Krajbich I, Hollinger JO. Porous polymer scaffolds surface-modified with arginine-glycine-aspartic acid enhance bone cell attachment and differentiation in vitro. J Biomed Mater Res Part A. 2003;64A:583–90.

    Article  CAS  Google Scholar 

  15. Jin Q, Wei G, Lin Z, Sugai JV, Lynch SE, Ma PX, et al. Nanofibrous scaffolds incorporating PDGF-BB microspheres induce chemokine expression and tissue neogenesis in vivo. PLoS ONE. 2008;3:e1729.

    Article  PubMed  Google Scholar 

  16. Koh HS, Yong T, Chan CK, Ramakrishna S. Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials. 2008;29:3574–82.

    Article  CAS  PubMed  Google Scholar 

  17. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260: 920–6.

    Article  CAS  PubMed  Google Scholar 

  18. Liu XH, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng. 2004;32:477–86.

    Article  PubMed  Google Scholar 

  19. Liu XH, Won Y, Ma PX. Porogen-induced surface modification of nano=fibrous poly(l-lactic acid) scaffolds for tissue engineering. Biomaterials. 2006;27:3980–7.

    Article  CAS  PubMed  Google Scholar 

  20. Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev. 2008;60:184–98.

    Article  CAS  PubMed  Google Scholar 

  21. Ma PX, Zhang RY. Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res. 1999;46:60–72.

    Article  CAS  PubMed  Google Scholar 

  22. Moroni L, Schotel R, Hamaan D, de Wijn JR, van Bitterswijk CA. 3D fiber-deposited electrospun integrated scaffolds enhance cartilage tissue formation. Adv Funct Mater. 2008;18:53–60.

    Article  CAS  Google Scholar 

  23. Morton WJ. Method of dispersing fluids. United States Patent No. 705,691; 1902.

    Google Scholar 

  24. Neff JA, Caldwell KD, Tresco PA. A novel method for surface modification to promote cell attachment to hydrophobic substrates. J Biomed Mater Res. 1998;40:511–9.

    Article  CAS  PubMed  Google Scholar 

  25. Niece K, Hartgerink JD, Donners JJJM, Stupp SI. Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction. J Am Chem Soc. 2003;125:7146–7.

    Article  CAS  PubMed  Google Scholar 

  26. Pankajakshan D, Kalliyana K, Krishnan LK. Vascular tissue generation in response to signaling molecules integrated with a novel poly(epsilon-caprolactone)-fibrin hybrid scaffold. J Tissue Eng Regen Med. 2007;1:389–97.

    Article  CAS  PubMed  Google Scholar 

  27. Potter W, Kalil RE, Kao WJ. Biomimetic material systems for neural progenitor cell-based therapy. Front Biosci. 2008;13:806–21.

    Article  CAS  PubMed  Google Scholar 

  28. Spalazzi JP, Dagher E, Doty SB, Guo XE, Rodeo SA, Lu HH. In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J Biomed Mater Res. 2008;86:1–12.

    Article  Google Scholar 

  29. Srouji S, Kizhner T, Suss-Tobi E, Livne E, Zussman E. 3-D nanofibrous electrospun multilayered construct is an alternative ECM mimicking scaffold. J Mater Sci Mater Med. 2008;19:1249–55.

    Article  CAS  PubMed  Google Scholar 

  30. Webster SR, Bizios R. Osteoblast adhesion on nanophase ceramics. Biomaterials. 1999;20:1221–7.

    Article  CAS  PubMed  Google Scholar 

  31. Webster SR, Bizios R. Design and evaluation of nanophase alumina for orthopaedic/dental applications. Nanostruct Mater. 1999;12:983–6.

    Article  Google Scholar 

  32. Webster T, Ergun C, Doremus RH, Siegel RW, Bizios R. Nanocrystalline hydroxyapatite enhances osteoblast function. First Joint BMES/EMBS Conference; 1999; Atlanta, GA; 1999. p. 744.

    Google Scholar 

  33. Wei G, Ma PX. Structure and properties of nano-hydoxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials. 2004;25:4749–657.

    Article  CAS  PubMed  Google Scholar 

  34. Wei GB, Ma PX. Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres. J Biomed Mater Res Part A. 2006;78A:306–15.

    Article  CAS  Google Scholar 

  35. Young B, Heath JW. Wheater’s functional histologyEdinburgh. UK: Elsevier; 2000.

    Google Scholar 

  36. Zhang SG. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol. 2003;21:1171–8.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang R, Ma PX. Poly(α-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res. 1999;44:446–55.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang R, Ma PX. Porous poly(l-lactic acid)/apatite composites created by biomimetic process. J Biomed Mater Res. 1999;45:285–93.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang R, Ma PX. Biomimetic polymer/apatite composite scaffolds for mineralized tissue engineering. Macromol Biosci. 2004;4:100–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter X. Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Smith, I.O., Ma, P.X. (2011). Biomimetic Scaffolds in Tissue Engineering. In: Pallua, N., Suscheck, C. (eds) Tissue Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02824-3_2

Download citation

Publish with us

Policies and ethics