Advertisement

Quantum Field Theory on Curved Backgrounds

  • Romeo BrunettiEmail author
  • Klaus Fredenhagen
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 786)

Abstract

Quantum field theory is an extremely successful piece of theoretical physics. Based on few general principles, it describes with an incredibly good precision large parts of particle physics. But also in other fields, in particular in solid state physics, it yields important applications. At present, the only problem which seems to go beyond the general framework of quantum field theory is the incorporation of gravity. Quantum field theory on curved backgrounds aims at a step toward solving this problem by neglecting the back reaction of the quantum fields on the spacetime metric.

Keywords

Poisson Bracket Minkowski Space Formal Power Series Natural Transformation Cauchy Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys. 5, 848 (1964)zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Haag, R.: Local Quantum Physics. 2nd edn. Springer-Verlag, Berlin, Heidelberg, New York (1996)zbMATHGoogle Scholar
  3. 3.
    Peskin, M.E., Schröder, D.V.: An Introduction to Quantum Field Theory. Perseus (1995)Google Scholar
  4. 4.
    Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle – A new paradigm for local quantum physics, Commun. Math. Phys. 237, 31 (2003)zbMATHADSMathSciNetGoogle Scholar
  5. 5.
    Radzikowski, M.: Micro-local approach to the Hadamard condition in quantum field theory in curved spacetime. Commun. Math. Phys. 179, 529 (1996)zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Brunetti, R., Fredenhagen, K., Köhler, M.: The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes. Commun. Math. Phys. 180, 633–652 (1996)zbMATHCrossRefADSGoogle Scholar
  7. 7.
    Hollands, S., Wald, R.M.: Local wick polynomials and time-ordered-products of quantum fields in curved spacetime. Commun. Math. Phys. 223, 289 (2001)zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Hamilton, R.S.: The inverse function theorem of Nash and Moser. Bull. (New Series) Am. Math. Soc. 7, 65 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Brunetti, R., Fredenhagen, K., Ribeiro, P.L.: work in progress.Google Scholar
  10. 10.
    Peierls, R.: The commutation laws of relativistic field theory. Proc. Roy. Soc. (London) A 214, 143 (1952)zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Marolf, D.M.: The generalized Peierls brackets. Ann. Phys. 236, 392 (1994)zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    deWitt, B.S.: The spacetime approach to quantum field theory. In: B.S. deWitt, R. Stora, (eds.), Relativity, Groups and Topology II: Les Houches 1983, part 2, 381, North-Holland, New York (1984)Google Scholar
  13. 13.
    Buchholz, D., Porrmann, M., Stein, U.: Dirac versus Wigner: Towards a universal particle concept in local quantum field theory. Phys. Lett. B 267, 377 (1991)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Steinmann, O.: Perturbative Quantum Electrodynamics and Axiomatic Field Theory. Springer, Berlin, Heidelberg, New York (2000)zbMATHGoogle Scholar
  15. 15.
    Buchholz, D., Ojima, I., Roos, H.: Thermodynamic properties of non-equilibrium states in quantum field theory. Ann. Phys. NY. 297, 219 (2002)zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Brunetti, R., Dütsch, M., Fredenhagen, K.: Perturbative Algebraic Quantum Field Theory and the Renormalization Groups. Preprint http://arxiv.org/abs/0901.2038
  17. 17.
    Dirac, P.A.M.: Classical theory of radiating electrons. Proc. Roy. Soc. London A929, 148 (1938)ADSGoogle Scholar
  18. 18.
    Brunetti, R., Fredenhagen, K.: Microlocal analysis and interacting quantum field theories: Renormalization on physical backgrounds. Commun. Math. Phys. 208, 623 (2000)zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Epstein, H., Glaser, V.: The role of locality in perturbation theory. Annales Poincare Phys. Theor. A 19, 211 (1973)MathSciNetGoogle Scholar
  20. 20.
    Hollands, S., Wald, R.M.: Existence of local covariant time-ordered-products of quantum fields in curved spacetime. Commun. Math. Phys. 231, 309 (2002)zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Duetsch, M., Hurth, T., Krahe, F., Scharf, G.: Causal Construction of Yang-Mills Theories 1. Nuovo Cim. A 106, 1029 (1993)CrossRefADSGoogle Scholar
  22. 22.
    Hollands, S.: Renormalized quantum yang-mills fields in curved spacetime. Rev. Math. Phys. 20, 1033 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann-Hilbert problem. I: The Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys. 210, 249 (2000)zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di TrentoPovoUSA
  2. 2.II. Institut für Theoretische Physik Universität HamburgHamburgGermany

Personalised recommendations