Skip to main content

VARSAT: Integrating Novel Probabilistic Inference Techniques with DPLL Search

  • Conference paper
Theory and Applications of Satisfiability Testing - SAT 2009 (SAT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5584))

Abstract

Probabilistic inference techniques can be used to estimate variable bias, or the proportion of solutions to a given SAT problem that fix a variable positively or negatively. Methods like Belief Propagation (BP), Survey Propagation (SP), and Expectation Maximization BP (EMBP) have been used to guess solutions directly, but intuitively they should also prove useful as variable- and value- ordering heuristics within full backtracking (DPLL) search. Here we report on practical design issues for realizing this intuition in the VARSAT system, which is built upon the full-featured MiniSat solver. A second, algorithmic, contribution is to present four novel inference techniques that combine BP/SP models with local/global consistency constraints via the EMBP framework. Empirically, we can also report exponential speed-up over existing complete methods, for random problems at the critically-constrained phase transition region in problem hardness. For industrial problems, VARSAT is slower that MiniSat, but comparable in the number and types problems it is able to solve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dechter, R., Kask, K., Mateescu, R.: Iterative join-graph propagation. In: Proc. of 18th International Conference on Uncertainty in Artificial Intelligence (UAI 2002), Edmonton, Canada, pp. 128–136 (2002)

    Google Scholar 

  2. Braunstein, A., Mezard, M., Zecchina, R.: Survey propagation: An algorithm for satisfiability. Random Structures and Algorithms 27, 201–226 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hsu, E., McIlraith, S.: Characterizing Propagation Methods for Boolean Satisfiability. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 325–338. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Achlioptas, D., Ricci-Tersenghi, F.: Random formulas have frozen variables. SIAM Journal of Computing (to appear)

    Google Scholar 

  5. Hsu, E.I.: VARSAT SAT-Solver homepage (2008), http://www.cs.toronto.edu/~eihsu/VARSAT/

  6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Jordan, M., Ghahramani, Z., Jaakkola, T., Saul, L.: An introduction to variational methods for graphical models. In: Jordan, M. (ed.) Learning in Graphical Models. MIT Press, Cambridge (1998)

    Chapter  Google Scholar 

  8. Kask, K., Dechter, R., Gogate, V.: Counting-based look-ahead schemes for constraint satisfaction. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 317–331. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Hsu, E., Kitching, M., Bacchus, F., McIlraith, S.: Using EM to find likely assignments for solving CSP’s. In: Proc. of 22nd Conference on Artificial Intelligence (AAAI 2007), Vancouver, Canada (2007)

    Google Scholar 

  10. Kroc, L., Sabharwal, A., Selman, B.: Survey propagation revisited. In: Proc. of 23rd International Conference on Uncertainty in Artificial Intelligence (UAI 2007), Vancouver, Canada (2007)

    Google Scholar 

  11. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo (1988)

    MATH  Google Scholar 

  12. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory 47(2) (2001)

    Google Scholar 

  13. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society 39(1), 1–39 (1977)

    MathSciNet  MATH  Google Scholar 

  14. Hsu, E., Muise, C., Beck, J.C., McIlraith, S.: Probabilistically estimating backbones and variable bias: Experimental overview. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Maneva, E., Mossel, E., Wainwright, M.: A new look at survey propagation and its generalizations. Journal of the ACM 54(4), 2–41 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In: Proc. of 18th International Joint Conference on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico (2003)

    Google Scholar 

  17. Beck, J.C., Prosser, P., Wallace, R.J.: Trying again to fail-first. In: Faltings, B.V., Petcu, A., Fages, F., Rossi, F. (eds.) CSCLP 2004. LNCS (LNAI), vol. 3419, pp. 41–55. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Braunstein, A., Zecchina, R.: Survey propagation as local equilibrium equations. Journal of Statistical Mechanics: Theory and Experiments PO6007 (2004)

    Google Scholar 

  19. Wallace, R.J.: Factor analytic studies of CSP heuristics. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 712–726. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  20. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algorithm selection for SAT. Journal of Artificial Intelligence Research 32, 565–606 (2008)

    MATH  Google Scholar 

  21. Manolios, P., Zhang, Y.: Implementing survey propagation on graphics processing units. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 311–324. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Zhang, W.: Configuration landscape analysis and backbone guided local search. Part I: Satisfiability and maximum satisfiability. Artificial Intelligence 158(1), 1–26 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zanarini, A., Pesant, G.: Solution counting algorithms for constraint-centered search heuristics. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 743–757. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Fang, H., Ruml, W.: Complete local search for propositional satisfiability. In: Proc. of 19th National Conference on Artificial Intelligence (AAAI 2004), San Jose, CA (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hsu, E.I., McIlraith, S.A. (2009). VARSAT: Integrating Novel Probabilistic Inference Techniques with DPLL Search. In: Kullmann, O. (eds) Theory and Applications of Satisfiability Testing - SAT 2009. SAT 2009. Lecture Notes in Computer Science, vol 5584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02777-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02777-2_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02776-5

  • Online ISBN: 978-3-642-02777-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics