Skip to main content

An Exponential Lower Bound for Width-Restricted Clause Learning

  • Conference paper
Theory and Applications of Satisfiability Testing - SAT 2009 (SAT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5584))

Abstract

It has been observed empirically that clause learning does not significantly improve the performance of a satisfiability solver when restricted to learning short clauses only. This experience is supported by a lower bound theorem: an unsatisfiable set of clauses, claiming the existence of an ordering of n points without a maximum element, can be solved in polynomial time when learning arbitrary clauses, but it is shown to require exponential time when learning only clauses of size at most n/4. The lower bound is of the same order of magnitude as a known lower bound for backtracking algorithms without any clause learning. It is shown by proving lower bounds on the proof length in a certain resolution proof system related to clause learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekhnovich, M., Johannsen, J., Pitassi, T., Urquhart, A.: An exponential separation between regular and general resolution. Theory of Computing 3, 81–102 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bayardo Jr., R.J., Schrag, R.C.: Using CSP look-back techniques to solver real-world SAT instances. In: Proc. 14th Natl. Conference on Artificial Intelligence, pp. 203–208 (1997)

    Google Scholar 

  3. Ben-Sasson, E., Impagliazzo, R., Wigderson, A.: Near-optimal separation of general and tree-like resolution. Combinatorica 24(4), 585–604 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonet, M.L., Galesi, N.: Optimality of size-width tradeoffs for resolution. Computational Complexity 10(4), 261–276 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buss, S.R., Hoffmann, J., Johannsen, J.: Resolution trees with lemmas: Resolution refinements that characterize DLL algorithms with clause learning. Logical Methods in Computer Science 4(4) (2008)

    Google Scholar 

  6. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving. Communications of the ACM 5(7), 394–397 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hertel, P., Bacchus, F., Pitassi, T., van Gelder, A.: Clause learning can effectively p-simulate general propositional resolution. In: Fox, D., Gomes, C.P. (eds.) Proceedings of the 23rd AAAI Conference on Artificial Intelligence, AAAI 2008, pp. 283–290. AAAI Press, Menlo Park (2008)

    Google Scholar 

  8. Krishnamurthy, B.: Short proofs for tricky formulas. Acta Informatica 22, 253–274 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Letz, R.: Personal communication

    Google Scholar 

  10. Segerlind, N., Buss, S.R., Impagliazzo, R.: A switching lemma for small restrictions and lower bounds for k-DNF resolution. SIAM Journal on Computing 33(5), 1171–1200 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability. In: Proc. IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 220–227 (1996)

    Google Scholar 

  12. Stålmarck, G.: Short resolution proofs for a sequence of tricky formulas. Acta Informatica 33, 277–280 (1996)

    Article  MathSciNet  Google Scholar 

  13. Tseitin, G.: On the complexity of derivation in propositional calculus. In: Studies in Constructive Mathematics and Mathematical Logic, Part 2, pp. 115–125 (1968)

    Google Scholar 

  14. van Gelder, A.: Pool resolution and its relation to regular resolution and DPLL with clause learning. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 580–594. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven learning in a Boolean satisfiability solver. In: Proc. IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 279–285 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Johannsen, J. (2009). An Exponential Lower Bound for Width-Restricted Clause Learning. In: Kullmann, O. (eds) Theory and Applications of Satisfiability Testing - SAT 2009. SAT 2009. Lecture Notes in Computer Science, vol 5584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02777-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02777-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02776-5

  • Online ISBN: 978-3-642-02777-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics