Shape Disparity Inspection of the Textured Object and Its Notification by Overlay Projection

  • Toshiyuki Amano
  • Hirokazu Kato
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5622)


In this paper we describe about use of the projector camera feedback system for shape disparity check of the textured object. Using the negative feedback in the proposed system, we realized real time shape disparity inspection and its visualization at the same time. In the experimental result, we confirmed the system has an ability to distinguish the 2 mm of shape disparity and its response time was 0.2 sec.


Gray Code Shape Measurement Texture Object Negative Feedback System Projector Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Li, Y., Gu, P.: Free-form surface inspection techniques state of the art review. In: Proc. of Computer-Aided Design, vol. 36, pp. 1395–1417 (2004)Google Scholar
  2. 2.
    Nakamura, K., Edamatsu, K., Sano, Y.: Auto-mated pattern inspection based on boundary length comparison method. In: Proc. International Joint Conference on Pattern Recognition, pp. 955–957 (1978)Google Scholar
  3. 3.
    Perkins, W.A.: Computer vision inspection of valve spring assemblies on engine heads. General Motors Research Laboratories, GMR-3369 (1980)Google Scholar
  4. 4.
    Bariani, M., Cucchiara, R., Mello, P., Piccardi, M.: Data mining for automated visual inspection. In: Proc. of PADD 1997, First Int. Conf. Practical Appl. Knowledge Discovery and Data Mining, London, UK, pp. 51–64 (1997); ISBN 0-9525554-7-6Google Scholar
  5. 5.
    Gunatilake, P., Siegel, M., Jordan, A., Podnar, G.: Image understanding algorithms for remote visual inspection of aircraft surfaces. In: Machine Vis. Appl. Indus Inspection V, vol. 3029, pp. 2–13 (1997)Google Scholar
  6. 6.
    Serdaroglu, A., Ertuzun, A., Ercil, A.: Defect Detection In Textile Fabric Images Using Wavelet Transforms And Independent Component Analysis. In: Proc. of PRIA 7, pp. 890–893 (2004)Google Scholar
  7. 7.
    Buisson, O., Bessere, B., Boukir, S., Helt, F.: Deterioration detection for digital film restoration. In: Proc. of Int. Conf. on CVPR, vol. 1, pp. 78–84 (1997)Google Scholar
  8. 8.
    Bimber, O., Iwai, D.: Superimposing dynamic range. In: Proc. of ACM SIGGRAPH 2008 new tech demos (2008)Google Scholar
  9. 9.
    Amano, T., Kato, H.: Real World Dynamic Appearance Enhancement with Procam Feedback. In: Proc. of Procams 2008 (2008)Google Scholar
  10. 10.
    Nayar, S.K., Peri, H., Grossberg, M.D., Belhumeur, P.N.: A projection system with radiometric compensation for screen imperfections. In: Proc. of ICCV Workshop on Projector-Camera Systems (2003)Google Scholar
  11. 11.
    Fujii, K., Grossberg, M.D., Nayar, S.K.: A Projector-Camera System with Real-Time Photometric Adaptation for Dynamic Environments. In: Proc. of CVPR 2005, pp. 814–821 (2005)Google Scholar
  12. 12.
    Ilie, A., Welch, G.: Ensuring color consistency across multiple cameras. In: ICCV 2005: Proceedings of the Tenth IEEE International Conference on Computer Vision, pp. 1268–1275. IEEE Computer Society, Washington (2005)Google Scholar
  13. 13.
    Ashdown, M., Okabe, T., Sato, I., Sato, Y.: Robust content-dependent photometric projector compensation. In: CVPRW 2006: Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition Workshop, IEEE Computer Society, Washington (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Toshiyuki Amano
    • 1
  • Hirokazu Kato
    • 1
  1. 1.Graduate School of Information ScienceNara Institute of Science and TechnologyIkomaJapan

Personalised recommendations