Haptic Interaction and Interactive Simulation in an AR Environment for Aesthetic Product Design

  • Monica Bordegoni
  • Francesco Ferrise
  • Marco Ambrogio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5622)


Market rules show that most of the times the aesthetic impact of a product is an important aspect that makes the difference in terms of success among different products. The product shape is generally created and represented during the conceptual phase of the product and the last trends show that the use of haptic devices allows users to more naturally and effectively interact with 3D models. Nevertheless the shape needs to satisfy some engineering requirements, and its aesthetic and functional analysis requires the collaboration and synchronization of activities performed by various experts having different competences and roles. This paper presents the description of an environment named PUODARSI that allows designers to modify the shape of a product and engineers to evaluate in real-time the impact of these changes on the structural and fluid dynamic properties of the product, describing the choice of the software tools, the implementation and some usability tests.


Mixed reality haptic interaction interactive simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hayward, V., Ashley, O., Hernandez, M.C., Grant, D., RoblesDeLaTorre, G.: Haptic interfaces and devices. Sensor Review 24(1), 16–29 (2004)CrossRefGoogle Scholar
  2. 2.
    PHANToM device, SenSable Technologies Inc.,
  3. 3.
    FCS-HapticMaster, MOOG-FCS,
  4. 4.
    Force Dimension Haptic devices,
  5. 5.
    Virtuose, Haption,
  6. 6.
    Bordegoni, M., Cugini, U., Covarrubias, M.: Design of a visualization system integrated with haptic interfaces. In: Horvath, I., Rusak, Z. (eds.) Proocedings of the TMCE (2008)Google Scholar
  7. 7.
    CHAI3D Haptic Library,
  8. 8.
    H3D Haptic Library,
  9. 9.
  10. 10.
    OpenSceneGraph Haptic Library,
  11. 11.
    Bordegoni, M., Cugini, U.: Haptic modeling in the conceptual phases of product design. Virtual Reality Journal 9(1), 192–202 (2006)CrossRefGoogle Scholar
  12. 12.
    Bordegoni, M., Ferrise, F., Shelley, S., Alonso, M., Hermes, D.: Sound and tangible interface for shape evaluation and modification. In: Proceeding of HAVE 2008 - IEEE International Workshop on Haptic Audio Visual Environments and their Applications (2008)Google Scholar
  13. 13.
    Kato, H., Billinghurst, M.: Marker tracking and hmd calibration for a video-based augmented reality conferencing system. In: International Workshop on Augmented Reality, p. 85 (1999)Google Scholar
  14. 14.
    Fiala, M.: Artag, a fiducial marker system using digital techniques. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, June 2, 2005, vol. 2, pp. 590–596 (2005)Google Scholar
  15. 15.
    Schmalstieg, D., Fuhrmann, A., Hesina, G., Szalavari, Z., Encarnacao, L.M., Gervautz, M., Purgathofer, W.: The studierstube augmented reality project. Tech. Rep. TR-186-2-00-22, Institute of Computer Graphics and Algorithms, Vienna University of Technology (2000)Google Scholar
  16. 16.
    Wohlgemuth, W., Triebfürst, G.: Arvika: augmented reality for development, production and service. In: Proceedings of DARE 2000 on Designing augmented reality environments, pp. 151–152. ACM Press, New York (2000)CrossRefGoogle Scholar
  17. 17.
    Doil, F., Schreiber, W., Alt, T., Patron, C.: Augmented reality for manufacturing planning. In: EGVE 2003: Proceedings of the workshop on Virtual environments 2003, pp. 71–76. ACM Press, New York (2003)CrossRefGoogle Scholar
  18. 18.
    Santos, P., Stork, A., Gierlinger, T., Pagani, A., Paloc, C., Barandarian, I., Conti, G., de Amicis, R., Witzel, M., Machui, O., Jimanez, J., Araujo, B., Jorge, J., Bodammer, G.: Improve: An innovative application for collaborative mobile mixed reality design review. International Journal on Interactive Design and Manufacturing 1(2), 115–126 (2007)CrossRefGoogle Scholar
  19. 19.
    Bruno, F., Caruso, F., Ferrise, F., Muzzupappa, M.: Vtk4ar: An object oriented framework for scientific visualization of cae data in augmented reality. In: Gallo, G., Battiato, S., Stanco, F. (eds.) Proceedings of Eurographics Italian Chapter Conference, Eurographics, pp. 76–81 (2006)Google Scholar
  20. 20.
    Fluent, by Ansys Inc.,
  21. 21.
    OpenFOAM: The Open Source CFD Toolbox,
  22. 22.
  23. 23.
    Fournier, A., Reeves, W.T.: A simple model of ocean waves. SIGGRAPH Comput. Graph. 20(4), 75–84 (1986)CrossRefGoogle Scholar
  24. 24.
    Chen, J.X., da Vitoria Lobo, N., Hughes, C.E., Moshell, J.M.: Real-time fluid simulation in a dynamic virtual environment. IEEE Computer Graphics and Applications 17(3), 52–61 (1997)CrossRefGoogle Scholar
  25. 25.
    Muller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, pp. 154–159 (2003)Google Scholar
  26. 26.
    Bordegoni, M., Ferrise, F., Ambrogio, M., Bruno, F., Caruso, F.: A multi-layered modelling architecture for virtual design. In: Proceedings of IDMME Virtual Concept 2008 Conference (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Monica Bordegoni
    • 1
  • Francesco Ferrise
    • 1
  • Marco Ambrogio
    • 1
  1. 1.Dipartimento di MeccanicaPolitecnico di MilanoMilanoItaly

Personalised recommendations