Advertisement

Effect of a Stereoscopic Movie on the Correlation between Head Acceleration and Body Sway

  • Hiroki Takada
  • Tetsuya Yamamoto
  • Masaru Miyao
  • Tatehiko Aoyama
  • Masashi Furuta
  • Tomoki Shiozawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5622)

Abstract

Visually induced motion sickness (VIMS) is caused by sensory conflict, the disagreement between vergence and visual accommodation while observing stereoscopic images. VIMS can be measured by psychological and physiological methods. We quantitatively measured the head acceleration and body sway before and during exposure to a conventional 3D movie. The subjects wore a head mount display and maintained the Romberg posture for the first 60 s and a wide stance (midlines of the heels 20 cm apart) for the next 60 s. Head acceleration was measured using an Active Tracer with 50 Hz sampling. The Simulator Sickness Questioner (SSQ) was completed immediately afterward. For the SSQ sub-scores and each index for stabilograms, we employed two-way ANOVA with leg postures and presence/absence of stereoscopic images as factors. Moreover, we assumed that the input signal was the head acceleration in the transfer system to control the body sway and estimate the transfer function.

Keywords

visually induced motion sickness stabilometry sparse density head acceleration transfer function analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Okawa, T., Tokita, T., Shibata, Y., Ogawa, T., Miyata, H.: Stabilometry - Significance of Locus Length Per Unit Area (L/A) in Patients with Equilibrium Disturbances. Equilibrium Res. 55(3), 283–293 (1995)CrossRefGoogle Scholar
  2. 2.
    Kaga, K.: Memaino Kouzo: Structure of vertigo. Kanehara, Tokyo, pp. 23–26, 95–100 (1992)Google Scholar
  3. 3.
    Okawa, T., Tokita, T., Shibata, Y., Ogawa, T., Miyata, H.: Stabilometry-Significance of locus length per unit area (L/A). Equilibrium Res. 54(3), 296–306 (1996)CrossRefGoogle Scholar
  4. 4.
    Fujiwara, K., Toyama, H.: Analysis of dynamic balance and its training effect-Focusing on fall problem of elder persons. Bulletin of the Physical Fitness Research Institute 83, 123–134 (1993)Google Scholar
  5. 5.
    Stoffregen, T.A., Hettinger, L.J., Haas, M.W., Roe, M.M., Smart, L.J.: Postural instability and motion sickness in a fixed-base flight simulator. Human Factors 42, 458–469 (2000)CrossRefGoogle Scholar
  6. 6.
    Riccio, G.E., Stoffregen, T.A.: An Ecological theory of motion sickness and postural instability. Ecological Physiology 3(3), 195–240 (1991)CrossRefGoogle Scholar
  7. 7.
    Oman, C.: A heuristic mathematical model for the dynamics of sensory conflict and motion sickness. Acta Otolaryngologica Supplement 392, 1–44 (1982)Google Scholar
  8. 8.
    Reason, J.: Motion sickness add–aptation: a neural mismatch model. J. Royal Soc. Med. 71, 819–829 (1978)Google Scholar
  9. 9.
    Stoffregen, T.A., Smart, L.J., Bardy, B.J., Pagulayan, R.J.: Postural stabilization of looking. Journal of Experimental Psychology. Human Perception and Performance 25, 1641–1658 (1999)CrossRefGoogle Scholar
  10. 10.
    Takada, H., Fujikake, K., Miyao, M., Matsuura, Y.: Indices to Detect Visually Induced Motion Sickness using Stabilometry. In: Proc. VIMS 2007, pp. 178–183 (2007)Google Scholar
  11. 11.
    Hatada, T.: Nikkei electronics 444, 205–223 (1988)Google Scholar
  12. 12.
    Yasui, R., Matsuda, I., Kakeya, H.: Combining volumetric edge display and multiview display for expression of natural 3D images. In: Proc. SPI, vol. 6055, pp. 0Y1–0Y9 (2006)Google Scholar
  13. 13.
    Kakeya, H.: MOEVision: simple multiview display with clear floating image. In: Proc.SPI, vol. 6490, 64900J (2007).Google Scholar
  14. 14.
    Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: A simulator sickness questionnaire (SSQ): A new method for quantifying simulator sickness. International J. Aviation Psychology 3, 203–220 (1993)CrossRefGoogle Scholar
  15. 15.
    Holomes, S.R., Griffin, M.J.: Correlation between heart rate and the severity of motion sickness caused by optokinetic stimulation. J. Psychophysiology 15, 35–42 (2001)CrossRefGoogle Scholar
  16. 16.
    Himi, N., Koga, T., Nakamura, E., Kobashi, M., Yamane, M., Tsujioka, K.: Differences in autonomic responses between subjects with and without nausea while watching an irregularly oscillating video. Autonomic Neuroscience. Basic and Clinical 116, 46–53 (2004)Google Scholar
  17. 17.
    Yokota, Y., Aoki, M., Mizuta, K.: Motion sickness susceptibility associated with visually induced postural instability and cardiac autonomic responses in healthy subjects. Acta Otolaryngologia 125, 280–285 (2005)CrossRefGoogle Scholar
  18. 18.
    Scibora, L.M., Villard, S., Bardy, B., Stoffregen, T.A.: Wider stance reduces body sway and motion sickness. In: Proc. VIMS 2007, pp. 18–23 (2007)Google Scholar
  19. 19.
    Sakaguchi, M., Taguchi, K., Ixhiyama, T., Netsu, K., Sato, K.: Relationship between head sway and center of foot pressure sway. Auris Nasus Larynx 22(3), 151–157 (1995)CrossRefGoogle Scholar
  20. 20.
    Takeda, T., Izumi, S., Sagawa, K.: On the correlation between the head movement and the movement of the center of gravity using HMD. In: Proceedings of the 1995 IEICE General Conference, p. 203 (1995)Google Scholar
  21. 21.
    Kido, K.: Digital Fourier Transform (II), pp. 68–102. Corona Publishing, Tokyo (2007)Google Scholar
  22. 22.
    Takada, H., Fujikake, K., Watanabe, T., Hasegawa, S., Omori, M., Miyao, M.: On a method to evaluate motion sickness induced by stereoscopic images on HMD. In: Proceedings of the IS&T/SPIE 21st Annual Symposium on Electronic Imaging Science and Technology (to appear, 2009)Google Scholar
  23. 23.
    Suzuki, J., Matsunaga, T., Tokumatsu, K., Taguchi, K., Watanabe, Y.: Q&A and a manual in Stabilometry. Equilibrium Res. 55(1), 64–77 (1996)CrossRefGoogle Scholar
  24. 24.
    Takada, H., Kitaoka, Y., Ichikawa, S., Miyao, M.: Physical Meaning on Geometrical Index for Stabilometly. Equilibrium Res. 62(3), 168–180 (2003)CrossRefGoogle Scholar
  25. 25.
    Day, B.L., Severac Cauquil, A., Bartolomei, L., Pastor, M.A., Lyon, I.N.: Human body-segment tilts induced by galvanic vestibular stimulation: a vestibularly driven balance protection mechanism. J. Physiol. 500, 661–672 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hiroki Takada
    • 1
  • Tetsuya Yamamoto
    • 1
  • Masaru Miyao
    • 2
  • Tatehiko Aoyama
    • 1
  • Masashi Furuta
    • 3
  • Tomoki Shiozawa
    • 4
  1. 1.Gifu University of Medical ScienceSekiJapan
  2. 2.Nagoya UniversityFuro-cho, Chikusa-KuJapan
  3. 3.Aichi University of EducationKariya, AichiJapan
  4. 4.Aoyama Gakuin UniversityTokyoJapan

Personalised recommendations