Skip to main content

Magic Numbers and Ternary Alphabet

  • Conference paper
Developments in Language Theory (DLT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5583))

Included in the following conference series:

Abstract

A number α, in the range from n to 2n, is magic for n with respect to a given alphabet size s, if there is no minimal nondeterministic finite automaton of n states and s input letters whose equivalent minimal deterministic finite automaton has α states. We show that in the case of a ternary alphabet, there are no magic numbers. For all n and α satisfying that \(n \leqslant \alpha \leqslant 2^n\), we describe an n-state nondeterministic automaton with a three-letter input alphabet that needs α deterministic states.

Research supported by VEGA grant 2/0111/09.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A.V., Ullman, J.D., Yannakakis, M.: On notions of information transfer in VLSI circuits. In: Proc. 15th STOC, pp. 133–139 (1983)

    Google Scholar 

  2. Birget, J.-C.: Intersection and union of regular languages and state complexity. Inform. Process. Lett. 43, 185–190 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Birget, J.-C.: Partial orders on words, minimal elements of regular languages, and state complexity. Theoret. Comput. Sci. 119, 267–291 (1993); Erratum: http://clam.rutgers.edu/~birget/poWordsERR.ps

    Article  MathSciNet  MATH  Google Scholar 

  4. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47, 149–158 (1986); Erratum: Theoret. Comput. Sci. 302, 497–498 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dassow, J., Stiebe, R.: Nonterminal complexity of some operations on context-free languages. In: Geffert, V., Pighizzini, G. (eds.) 9th International Workshop on Descriptional Complexity of Formal Systems, pp. 162–169. P. J. Šafárik University of Košice, Slovakia (2007)

    Google Scholar 

  6. Geffert, V.: (Non)determinism and the size of one-way finite automata. In: Mereghetti, C., Palano, B., Pighizzini, G., Wotschke, D. (eds.) 7th International Workshop on Descriptional Complexity of Formal Systems, pp. 23–37. University of Milano, Italy (2005)

    Google Scholar 

  7. Geffert, V.: Magic numbers in the state hierarchy of finite automata. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 412–423. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic finite automata. Inform. Process. Lett. 59, 75–77 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hromkovič, J.: Communication Complexity and Parallel Computing. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  10. Iwama, K., Kambayashi, Y., Takaki, K.: Tight bounds on the number of states of DFAs that are equivalent to n-state NFAs. Theoret. Comput. Sci. 237, 485–494 (2000); Preliminary version in: Bozapalidis, S. (ed.) 3rd International Conference on Developments in Language Theory. Aristotle University of Thessaloniki (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Iwama, K., Matsuura, A., Paterson, M.: A family of NFAs which need 2nα deterministic states. Theoret. Comput. Sci. 301, 451–462 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jirásková, G.: Note on minimal finite automata. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 421–431. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Jirásková, G.: On the state complexity of complements, stars, and reversals of regular languages. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 431–442. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Jirásek, J., Jirásková, G., Szabari, A.: Deterministic blow-ups of minimal nondeterministic finite automata over a fixed alphabet. Internat. J. Found. Comput. Sci. 16, 511–529 (2005)

    Article  MATH  Google Scholar 

  15. Lyubich, Yu.I.: Estimates for optimal determinization of nondeterministic autonomous automata. Sibirskii Matematicheskii Zhurnal 5, 337–355 (1964)

    MATH  Google Scholar 

  16. Matsuura, A., Saito, Y.: Equivalent transformation of minimal finite automata over a two-letter alphabet. In: Campeanu, C., Pighizzini, G. (eds.) 10th International Workshop on Descriptional Complexity of Formal Systems, pp. 224–232. University of Prince Edward Island, Canada (2008)

    Google Scholar 

  17. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM Res. Develop. 3, 114–129 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sipser, M.: Introduction to the theory of computation. PWS Publishing Company, Boston (1997)

    MATH  Google Scholar 

  19. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, ch. 2, vol. I, pp. 41–110. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  20. Zijl, L.: Magic numbers for symmetric difference NFAs. Internat. J. Found. Comput. Sci. 16, 1027–1038 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jirásková, G. (2009). Magic Numbers and Ternary Alphabet. In: Diekert, V., Nowotka, D. (eds) Developments in Language Theory. DLT 2009. Lecture Notes in Computer Science, vol 5583. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02737-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02737-6_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02736-9

  • Online ISBN: 978-3-642-02737-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics