SeMap: A Concept for the Visualization of Semantics as Maps

  • Kawa Nazemi
  • Matthias Breyer
  • Christoph Hornung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5616)


The enhancement of the individual knowledge is a basic need that came up with changes in our society, whereas the process of learning disappears more and more. In the recent past the disappearance of a predefined learning process was named ambient learning, which came up to cope the changing need of every time and everywhere learning. Learning contents get more structure by new technologies like semantics, which specifies and defines more the semantic structure and with it the meaning of information. Users working with information system are confronted with different processes for getting the required information. The following paper introduces a new visualization technique, which uses the everyday processes of information search for imparting knowledge. The visualization technique utilizes the surplus of semantics to encourage the process of ambient learning.


semantic visualization ambient learning treemap treeview 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artino Jr., A.R.: Cognitive Load Theory and the Role of Learner Experience: An Abbreviated Review for Educational Practitioners. AACE Journal 16(4), 425–439 (2008)Google Scholar
  2. 2.
    Carol, J.J., Klyne, G.: Resource Description Framework: Concepts and Abstract Syntax. W3C Recommendation (2004),
  3. 3.
    Ware, C.: Information Visualization: Perception for Design. Morgan Kaufmann, San Francisco (2000)Google Scholar
  4. 4.
    Federal Ministry of Economy and Technology, Bundesministerium für Wirtschaft und Technologie (BMWi),
  5. 5.
    Fitts, P.M.: The Information Capacity of the Human Motor System in Controlling the Amlitude of Movement. Journal of Experimental Psychology 47, 381–391 (1954)CrossRefGoogle Scholar
  6. 6.
    Freire, M., Rodríguez, P.: Preserving the mental map in interactive graph interfaces. In: Proceedings of Advanced Visual Interfaces. ACM, New York (2006)Google Scholar
  7. 7.
    Herman, I., Melancon, G., Marshall, M.S.: Graph Visualization and Navigation in Information Visualization: A Survey. IEEE Transactions on Visualization and Computer Graphics 6(1), 24–43 (2000)CrossRefGoogle Scholar
  8. 8.
    Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.: Ontology Visualzation Methods – A Survey. ACM Computing Surveys 39(4) (2007)Google Scholar
  9. 9.
    Paraskakis, I.: Ambient Learning: a new paradigm for e-learning. In: 3rd International Conference on Multimedia and Information & Communication Technologies in Education (2005)Google Scholar
  10. 10.
  11. 11.
    Shneiderman, B.: The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. In: Proceedings 1996 IEEE, Visual Languages, pp. 336–343. IEEE, Washington (1996)CrossRefGoogle Scholar
  12. 12.
    Shneiderman, B.: Tree Visualization with Tree-Maps: 2-d Space-Filling Approach. ACM Transactions on Graphics 11(1), 92–99 (1992)CrossRefzbMATHGoogle Scholar
  13. 13.
  14. 14.
    UDLA Universidad de las Americas Puebla, Image Source:
  15. 15.
    W3C RDF Specification,
  16. 16.
    World Wide Web Consortium,

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Kawa Nazemi
    • 1
  • Matthias Breyer
    • 1
  • Christoph Hornung
    • 1
  1. 1.Fraunhofer Institute for Computer Graphics ResearchDarmstadtGermany

Personalised recommendations