Skip to main content

Reducing the Complexity in the Distributed Computation of Private RSA Keys

  • Conference paper
Information Security and Privacy (ACISP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5594))

Included in the following conference series:

  • 624 Accesses

Abstract

Catalano, Gennaro and Halevi (2000) present a protocol for the distributed computation of inverses over a shared secret modulus. The most important application of their protocol is the distributed computation of the private RSA key from the public key. The protocol is attractive, because it requires only two rounds of communication in the case of honest but curious players. The present paper gives a modification of this protocol, which reduces its complexity from O(n 3 (logn)2 + n 2 (logn) (logN) + (logN)2) to O(n 3 logn + n 2 logN + (logN)2) bit-operations per player, where n is the number of players and N is the RSA modulus. The number of communication rounds is the same as in the original protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the 20th Annual Symposium on Theory of Computing (STOC 1988), pp. 1–10. ACM Press, New York (1988)

    Google Scholar 

  2. Catalano, D.: Efficient distributed computation modulo a shared secret. In: Catalano, D., Cramer, R., Damgård, I., Di Crescenco, G., Pointcheval, D., Takagi, T. (eds.) Contemporary Cryptology, CRM Barcelona. Advanced Courses in Mathematics, pp. 1–39. Birkhäuser, Basel (2005)

    Chapter  Google Scholar 

  3. Catalano, D., Gennaro, R., Halevi, S.: Computing inverses over a shared secret modulus. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 190–206. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: Proceedings of the 20th Annual Symposium on Theory of Computing (STOC 1988), pp. 11–19. ACM Press, New York (1988)

    Google Scholar 

  5. Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, Berlin (2000)

    Google Scholar 

  6. Cramer, R., Shoup, V.: Signature schemes based on the Strong RSA Assumption. ACM Transactions on Information and System Security (ACM TISSEC) 3(3), 161–185 (2000)

    Article  Google Scholar 

  7. Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the random oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–139. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty computations with applications to threshold cryptography. In: Proceedings of the 17th ACM Symposium on Principles of Distributed Computing (PODC 1998), pp. 101–111. ACM Press, New York (1998)

    Google Scholar 

  9. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the 19th Annual Symposium on Theory of Computing (STOC 1987), pp. 218–229. ACM Press, New York (1987)

    Google Scholar 

  10. Hairer, E., Wanner, G.: Analysis by Its History. Springer, New York (1995)

    MATH  Google Scholar 

  11. Knuth, D.E.: The Art of Computer Programming. Seminumerical Algorithms, vol. 2. Addison-Wesley, Reading (1971)

    Google Scholar 

  12. Lory, P.: Reducing the complexity in the distributed multiplication protocol of two polynomially shared values. In: Proceedings of the 3rd IEEE International Symosium on Security in Networks and Distributed Systems (SSNDS 2007). AINA 2007, vol. 1, pp. 404–408. IEEE Computer Society Press, Los Alamitos (2007)

    Google Scholar 

  13. Mao, W.: Modern Cryptography: Theory and Practice. Prentice Hall, Upper Saddle River (2004)

    MATH  Google Scholar 

  14. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  17. Yao, A.C.: How to generate and exchange secrets. In: Proceedings of the 27th IEEE Symposium on Foundations of Computer Science (FOCS 1986), pp. 162–167. IEEE Computer Society, Los Alamitos (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lory, P. (2009). Reducing the Complexity in the Distributed Computation of Private RSA Keys. In: Boyd, C., González Nieto, J. (eds) Information Security and Privacy. ACISP 2009. Lecture Notes in Computer Science, vol 5594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02620-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02620-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02619-5

  • Online ISBN: 978-3-642-02620-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics