Advertisement

Secure Cover Selection Steganography

  • Hedieh Sajedi
  • Mansour Jamzad
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5576)

Abstract

This paper presents a cover selection steganography method based on introduction of a technique for computing steganography capacity as a property of images. An ensemble system that uses different steganalyzer units, determines the upper bound of embedding rate in a cover image. In this technique, each steganalyzer unit is a combination of multiple steganalyzers with a same type but each one trained to detect stego images with a certain payload. Our proposed method minimizes the risk of detection by selecting a proper cover image that its steganography capacity is sufficient to hide a specific secret data securely. Experimental results demonstrate the efficiency and practicability of the proposed technique in enhancing the security of stego images.

Keywords

Cover Selection Steganography Steganography Capacity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sallee, P.: Model-based steganography. In: Kalker, T., Cox, I., Ro, Y.M. (eds.) IWDW 2003. LNCS, vol. 2939, pp. 154–167. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Fridrich, J., Goljan, M., Soukal, D.: Perturbed quantization steganography with wet paper codes. In: ACM Multimedia Workshop, Germany (2004)Google Scholar
  3. 3.
    Solanki, K., Sarkar, A., Manjunath, B.S.: YASS: yet another steganographic scheme that resists blind steganalysis. In: Furon, T., Cayre, F., Doërr, G., Bas, P. (eds.) IH 2007. LNCS, vol. 4567, pp. 16–31. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Chandramouli, R., Memon, N.D.: Steganography Capacity: A Steganalysis Perspective. In: SPIE Security and Watermarking of Multimedia Contents, vol. 5020, pp. 173–177 (2003)Google Scholar
  5. 5.
    Fridrich, J., Pevny, T., Kodovsky, J.: Statistically Undetectable JPEG Steganography: Dead Ends, Challenges, and Opportunities. In: MM&Sec, USA (2007)Google Scholar
  6. 6.
    Cachin, C.: An information-theoretic model for steganography. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 306–318. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Moulin, P., Mihcak, M.K.: A framework for evaluating the data hiding capacity of image sources. IEEE Trans. Image Processing 11, 1029–1042 (2002)CrossRefGoogle Scholar
  8. 8.
    Dong, Y., Han, K.: Boosting SVM classifiers by ensemble. In: International conference ACM on World Wide Web, pp. 1072–1073 (2005)Google Scholar
  9. 9.
    Ker, A.: A Capacity Result for Batch Steganography. IEEE Signal Processing Let. 14(8), 525–528 (2007)CrossRefGoogle Scholar
  10. 10.
    Kharrazi, M., Sencar, T.H., Memon, N.: Benchmarking steganographic and steganalysis, techniques. In: EI SPIE, San Jose, CA (2005)Google Scholar
  11. 11.
    Avcibas, I., Kharrazi, M., Memon, N., Sankur, B.: Image steganalysis with binary similarity measures. EURASIP Journal on Applied Signal Processing (2005)Google Scholar
  12. 12.
    Lyu, S., Farid, H.: Detecting hidden messages using higher-order statistics and support vector machines. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 340–354. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Lyu, S., Farid, H.: Steganalysis using color wavelet statistics and one-class support vector machines. In: SPIE Symposium on Electronic Imaging, San Jose, CA (2004)Google Scholar
  14. 14.
    Fridrich, J.: Feature-based steganalysis for jpeg images and its implications for future design of steganographic schemes. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 67–81. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2, 121–167 (1998)CrossRefGoogle Scholar
  17. 17.
    Pevny, T., Fridrich, J.: Merging Markov and DCT features for multi-class JPEG steganalysis. In: SPIE, San Jose, CA (2007)Google Scholar
  18. 18.
    Chen, C., Shi, Y.Q., Chen, W., Xuan, G.: Statistical moments based universal steganalysis using JPEG-2D array and 2-D characteristic function. In: ICIP, pp. 105–108 (2006)Google Scholar
  19. 19.
    Sajedi, H., Jamzad, M.: A Steganalysis Method Based on Contourlet Transform Coefficients. In: Intelligent Information Hiding and Multimedia Signal Processing (2008)Google Scholar
  20. 20.
    Kermani, Z.Z., Jamzad, M.: A Robust Steganography Algorithm Based On Texture Similarity Using Gabor Filter. In: IEEE Symposium on Signal processing and Information Technology, pp. 578–582 (2005)Google Scholar
  21. 21.
    Sajedi, H., Jamzad, M.: Cover Selection Steganography Method Based on Similarity of Image Blocks. In: IEEE CIT, Sydney, Australia (2008)Google Scholar
  22. 22.
    Kharrazi, M., Sencar, H., Memon, N.: Cover Selection for Steganographic Embedding. In: ICIP, pp. 117–121 (2006)Google Scholar
  23. 23.
    Washington University image database, http://www.cs.washington.edu/research/imagedatabase

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hedieh Sajedi
    • 1
  • Mansour Jamzad
    • 1
  1. 1.Computer Engineering DepartmentSharif university of TechnologyTehranIran

Personalised recommendations