A New Double-Block-Length Hash Function Using Feistel Structure

  • Jesang Lee
  • Seokhie Hong
  • Jaechul Sung
  • Haeryong Park
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5576)


We propose new double-block-length hash functions. Our approach for constructing collision-resistant double-block-length hash functions is to convert a blockcipher E with n-bit block length and 2n-bit key length to a 3-round Feistel cipher E * with 2n-bit block length, and then to embed E * in PGV compression functions. We prove that 12 hash functions with the group-1 PGV compression functions in which E * is embedded are collision-resistant in the ideal cipher model. Furthermore, since our hash functions have the hash rate 2/3, they are more efficient than any other existing double-block-length hash functions in terms of the number of blockcipher calls required for processing messages.


Hash Function Double Block Length Hash Function Block Ciphers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Black, J., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 320–325. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Damgard, I.B.: A Design principle for hash functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)Google Scholar
  3. 3.
    Hirose, S.: Provably Secure Double-Block-Length Hash Functions in a Black-Box Model. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 330–342. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Hirose, S.: Some Plausible Constructions of Double-Block-Length Hash Functions. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Knudsen, L.R., Lai, X., Preneel, B.: Attacks on fast double block length hash functions. Journal of Cryptology 11(1), 59–72 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Lee, W., Nandi, M., Sarkar, P., Chang, D., Lee, S., Sakurai, K.: A Generalization of PGV-Hash Functions and Security Analysis in Black-Box Model. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 212–223. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)Google Scholar
  8. 8.
    Nandi, M., Lee, W., Sakurai, K., Lee, S.: Security Analysis of a 2/3-Rate Double Length Compression Function in Black-Box Model. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 243–254. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers: A synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 368–378. Springer, Heidelberg (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jesang Lee
    • 1
  • Seokhie Hong
    • 1
  • Jaechul Sung
    • 2
  • Haeryong Park
    • 3
  1. 1.Center for Information Security Technologies(CIST)Korea UniversityKorea
  2. 2.Department of MathematicsUniversity of SeoulKorea
  3. 3.Korea Information Security Agency(KISA)Korea

Personalised recommendations