Advertisement

Efficient Secure Multiparty Computation Protocol in Asynchronous Network

  • Zheng Huang
  • Weidong Qiu
  • Qiang Li
  • Kefei Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5576)

Abstract

This paper proposes an efficient secure multiparty computation protocol among n players resilient to \(t<\frac{n}{4}\) players in asynchronous model. We use Batch Secret Sharing [9] as building blocks. The construction of our protocol is along the line of [7]and [2] which work in synchronous model. The execution of our protocol can be divided into two phases: Pre-computation phase and the Circuit evaluation phase. The pre-computation phase needs to communicate \(O( n^4 \lg |\mathcal{F}| + mn^2 \log |\mathcal{F}|)\) bits and Broadcast \(O(n^2 \lg |\mathcal{F}|) \) bits, where m is the number of multiplication gates in the circuit and the circuit is over a finite field \(\mathcal{F}\). The circuit evaluation phase needs to communicate \(O(n^3 \lg |\mathcal{F}|+n^4 \lg n+mn^2 \lg |\mathcal{F}|) \) bits and Broadcast \(O(n^2 \lg n)\) bits. Compared with the well-known secure multiparty computation protocol in asynchronous model [4] which needs to communicate \(O(mn^4 \lg |\mathcal{F}|+mn^4 \lg n)\) bits and broadcast \(O(mn^4 \lg n)\) bits, our protocol is quite efficient.

Keywords

Secure Multiparty Computation Asynchronous Network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blahut, R.E.: Theory and proctice of Error Control Codes. Addison-Wesley, Reading (1984)Google Scholar
  2. 2.
    Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992)Google Scholar
  3. 3.
    Ben-Or, M., Kelmer, B., Rabin, T.: Asynchromous secure computation with optimal resilience. In: Proceedings of 13th ACM PODC, pp. 183–192 (1994)Google Scholar
  4. 4.
    Ben-Or, M., Cannetti, R., Goldreich, O.: Asynchromous secure computations. In: Proceedings of 25th ACM STOC, pp. 52–61 (1993)Google Scholar
  5. 5.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Noncryptographic Fault-Tolerant Distributed Computations. In: Proc. 20th Annual Symp. on the Theory of Computing, pp. 1–10. ACM Press, New York (1988)Google Scholar
  6. 6.
    Canetti, R.: Studies in secure multiparty computation and applications. PhD Thesis, Dept. of Computer Science and Applied Mathematics, Weizmann Institute of Science (May 1995)Google Scholar
  7. 7.
    Hirt, M., Mauren, U.: Robustness for Free in Unconditional Multiparty computation. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 101–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Srinathan, K., Pandu Rangan, C.: Efficient Asynchronous Secure Multiparty Distributed Computation. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 117–130. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Zheng, H., Zheng, G., Qiangp, L.: Batch Secret Sharing for Secure Multiparty Computation in Asynchronous Network. Journal of Shanghai Jiaotong University 14(1) (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Zheng Huang
    • 1
  • Weidong Qiu
    • 1
  • Qiang Li
    • 1
  • Kefei Chen
    • 1
  1. 1.Institute of Information Security and EngineeringShangHai JiaoTong UniversityShanghaiP.R. China

Personalised recommendations