Improved Implementations of Cryptosystems Based on Tate Pairing

  • Chang-An Zhao
  • Dongqing Xie
  • Fangguo Zhang
  • Chong-Zhi Gao
  • Jingwei Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5576)


Hu et al. first studied pairing computations on supersingular elliptic curve with odd embedding degree k = 3 and applied them to Identity-based cryptosystems. In this paper, a careful analysis of the pairing computation on this family of supersingular curves is given. Some novel improvements are presented from different points of view and hence speed up the implementation of Identity-based cryptosystems.


Tate pairing elliptic curves Identity-based cryptosystems efficient algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barreto, P.S.L.M., Galbraith, S., ÓhÉigeartaigh, C., Scott, M.: Efficient pairing computation on supersingular Abelian varieties. Designs, Codes and Cryptography 42(3), 239–271 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Blake, I.F., Seroussi, G., Smart, N.P.: Elliptic Curves in Cryptography. Cambridge University Press, New York (1999)CrossRefzbMATHGoogle Scholar
  4. 4.
    Chung, J., Hasan, M.A.: Asymmetric squaring formulae (2006),
  5. 5.
    Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 51–65. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM Journal of Computing 32(3), 586–615 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Frey, G., Rück, H.-G.: A remark concerning m-divisibility and the discrete logartihm in the divisor class group of curves. Math. Comp. 62(206), 865–874 (1994)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Galbraith, S.D.: Pairings - Advances in Elliptic Curve Cryptography. In: Blake, I., Seroussi, G., Smart, N. (eds.). Cambridge University Press, Cambridge (2005)Google Scholar
  9. 9.
    Hu, L., Dong, J.-W., Pei, D.-Y.: An implementation of cryptosystems Based on tate pairing. Journal of Computer Science and Technology 20(2), 264–269 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hu, L.: Compression of Tate Pairings on Elliptic Curves. Journal of Software in China 18(7), 1799–1805 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hess, F., Smart, N.P., Vercauteren, F.: The Eta pairing revisited. IEEE Transactions on Information Theory 52, 4595–4602 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lee, E., Lee, H.-S., Park, C.-M.: Efficient and generalized pairing computation on abelian varieties. IEEE Transactions on Information Theory 55(4), 1793–1803 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Knuth, D.E.: Seminumerical algorithms. Addison-Wesley, Reading (1981)zbMATHGoogle Scholar
  14. 14.
    Miller, V.S.: Short programs for functions on curves (Unpublished manuscript) (1986)Google Scholar
  15. 15.
    Matsuda, S., Kanayama, N., Hess, F., Okamoto, E.: Optimised versions of the Ate and twisted Ate pairings. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887, pp. 302–312. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Silverman, J.H.: The arithmetic of elliptic curves. Graduate Texts in Mathematics, vol. 106. Springer, Heidelberg (1986)zbMATHGoogle Scholar
  17. 17.
    Verheul, E.: Evidence that XTR is more secure than supersingular elliptic curve cryptosystems. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 195–210. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Zhao, C.-A., Zhang, F., Huang, J.: A note on the Ate pairing. Internationl Journal of Information Security 7(6), 379–382 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Chang-An Zhao
    • 1
  • Dongqing Xie
    • 1
  • Fangguo Zhang
    • 2
  • Chong-Zhi Gao
    • 1
  • Jingwei Zhang
    • 2
  1. 1.School of Computer Science and Educational SoftwareGuangzhou UniversityGuangzhouP.R. China
  2. 2.School of Information Science and TechnologySun Yat-sen UniversityGuangzhouP.R. China

Personalised recommendations