Advertisement

A New Strongly Secure Authenticated Key Exchange Protocol

  • Qingfeng Cheng
  • Chuangui Ma
  • Xuexian Hu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5576)

Abstract

In 2007, LaMacchia et al. proposed the extended Canetti-Krawczyk (eCK) model, which is currently regarded as the strongest security model for authenticated key exchange (AKE) protocols. In the eCK model, the adversary can reveal a party’s ephemeral private key or static private key on the test session, but can’t reveal the ephemeral value which was computed using ephemeral private key and static private key. In this paper, we first present the modified eCK (meCK) model by adding a new reveal query. The adversary can reveal all ephemeral secret information of the test session according to the meCK model’s freshness definition. Then we propose a new strongly secure AKE protocol, called E-NAXOS, and prove its security in the meCK model under the random oracle assumption and the gap Diffie-Hellman assumption.

Keywords

Extended Canetti-Krawczyk model Gap Diffie-Hellman assumption Random oracle model Authenticated key exchange 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  2. 2.
    Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    LaMacchia, B., Lauter, K., Mityagin, A.: Stronger Security of Authenticated Key Exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (2005), http://eprint.iacr.org/2005/176 CrossRefGoogle Scholar
  5. 5.
    Ustaoǧlu, B.: Obtaining a Secure and Efficient Key Agreement Protocol from (H)MQV and NAXOS. Designs, Codes and Cryptography 46(3), 329–342 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Okamoto, T.: Authenticated Key Exchange and Key Encapsulation in the Standard Model. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 474–484. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Lee, J., Park, J.H.: Authenticated Key Exchange Secure under the Computational Diffie-Hellman Assumption, http://eprint.iacr.org/2008/344
  8. 8.
    Lee, J., Park, C.S.: An Efficient Authenticated Key Exchange Protocol with a Tight Security Reduction, http://eprint.iacr.org/2008/345
  9. 9.
    Huang, H., Cao, Z.: Strongly Secure Authenticated Key Exchange Protocol Based on Computational Diffie-Hellman Problem, http://eprint.iacr.org/2008/500

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Qingfeng Cheng
    • 1
  • Chuangui Ma
    • 1
  • Xuexian Hu
    • 1
  1. 1.Zhengzhou Information Science and Technology InstituteZhengzhouP. R. China

Personalised recommendations