Advertisement

Abstract

In this paper an adaptive iris segmentation algorithm is presented. In the proposed algorithm Otsu Threshold value, average gray level of the image, image size, Hough-Circle search are used for adaptive segmentation of irises. Otsu threshold is used for selecting threshold value in order to determine pupil location. Then Hough circle is utilized for pupillary boundary, and finally gradient search is used for the limbic boundary detection. The algorithm achieved 98% segmentation rate in batch processing of the CASIA version 1 (756 Images) and version 3 (CASIA-IrisV3-Interval, 2655 Images) databases.

Keywords

Independent Component Analysis Iris Image Iris Recognition Iris Boundary Average Gray Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jain, A., Bolle, R., Kanti, S.P.: Biometrics: Personal Identification in a Networked Society. Kluwer, Dordrecht (1998)Google Scholar
  2. 2.
    Adler, F.: Physiology of the Eye: Clinical Application, 4th edn. The C.V. Mosby Company, London (1965)Google Scholar
  3. 3.
    Daugman, J.: Biometric Personal Identification System Based on Iris Analysis. US Patent no. 5291560 (1994)Google Scholar
  4. 4.
    Daugman, J.: Statistical richness of visual phase information: Update on recognizing persons by iris patterns. Int. Journal of Computer Vision (2001)Google Scholar
  5. 5.
    Daugman, J.: Demodulation by complex-valued wavelets for stochastic pattern recognition. Int. Journal of Wavelets, Multiresolution and Information Processing (2003)Google Scholar
  6. 6.
    Daugman, J.: How iris recognition works. IEEE Transactions on Circuits and Systems for Video Technology 14(1), 21–30 (2004)CrossRefGoogle Scholar
  7. 7.
    Wildes, R.: Iris recognition: An emerging biometric technology. Proc. of the IEEE 85(9), 1348–1363 (1997)CrossRefGoogle Scholar
  8. 8.
    Boles, W., Boashash, B.: A human identification technique using images of the iris and wavelet transform. IEEE Trans. on Signal Processing 46(4), 1185–1188 (1998)CrossRefGoogle Scholar
  9. 9.
    Masek, L.: Recognition of Human Iris Patterns for Biometric Identification. BEng. Thesis. School of Computer Science and Software Engineering, The University of Western Australia (2003)Google Scholar
  10. 10.
    Ma, L., Tan, T., Wang, Y., Zhang, D.: Personal identification based on iris texture analysis. IEEE Trans. Pattern Anal. Mach. Intelligence 25(12), 1519–1533 (2003)CrossRefGoogle Scholar
  11. 11.
    Ma, L., Wang, Y.H., Tan, T.N.: Iris recognition based on multichannel gabor filtering. In: Proc. of the Fifth Asian Conference on Computer Vision, Australia, pp. 279–283 (2002)Google Scholar
  12. 12.
    Tisse, C., Martin, L., Torres, L., Robert, M.: Person identification technique using human iris recognition. In: Proc. of Vision Interface, pp. 294–299 (2002)Google Scholar
  13. 13.
    Kanag, H., Xu, G.: Iris recognition system. Journal of Circuit and Systems 15(1), 11–15 (2000)Google Scholar
  14. 14.
    Yuan, W., Lin, Z., Xu, L.: A rapid iris location method based on the structure of human eyes. In: Proc. of 27th IEEE Annual Conferemce Engineering in Medicine and Biology, Shanghai, China, September 1-4 (2005)Google Scholar
  15. 15.
    Daugman, J.: New methods in iris recognition. IEEE Trans. Syst., Man, Cybern. B, Cybern. 37(5), 1168–1176 (2007)CrossRefGoogle Scholar
  16. 16.
    Vatsa, M., Singh, R., Noore, A.: Improving iris recognition performance using segmentation, quality enhancement, match score fusion, and indexing. IEEE Trans. on Systems, Man, and Cybernetics Part B: Cybernetics 38(4), 1021–1035 (2008)CrossRefGoogle Scholar
  17. 17.
    Liu, X., Bowyer, K., Flynn, P.: Experiments with an improved iris segmentation algorithm. In: Fourth IEEE Workshop on Automatic Identification Advanced Technologies, vol. 17-18, pp. 118–123 (2005)Google Scholar
  18. 18.
    Cui, J., Wang, Y., Tan, T., Ma, L., Sun, Z.: A fast and robust iris localization method based on texture segmentation. In: Proc. SPIE, vol. 5404, pp. 401–408 (2004)Google Scholar
  19. 19.
    Abiyev, R., Altunkaya, K.: Neural Network Based Biometric Personel Identification with fast iris segmentation. Int. Journal of Control, Automation and Systems. 7(1) (2009)Google Scholar
  20. 20.
    Abiyev, R., Altunkaya, K.: Iris recognition for biometric personal identification using neural networks. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4669, pp. 554–563. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Daugman, J., Downing, C.: Recognizing iris texture by phase demodulation. In: IEEE Colloquium on Image Processing for Biometric Measurement, vol. 2, pp. 1–8 (1994)Google Scholar
  22. 22.
    Miyazawa, K., Ito, K., Aoki, T., Kobayashi, K., Nakajima, H.: An effective approach for iris recognition using phase-based image matching. IEEE Trans. on Pattern Analysis and Machine Intelligence 30(10), 1741–1756 (2008)CrossRefGoogle Scholar
  23. 23.
    Sanchez-Avila, C., Sanchez-Reillo, R.: Iris-based biometric recognition using dyadic wavelet transform. IEEE Aerospace and Electronic Systems Magazine, 3–6 (2002)Google Scholar
  24. 24.
    Noh, S., Bae, K., Kim, J.: A novel method to extract features for iris recognition system. In: Proc. 4th Int. Conf. Audio and Video Based Biometric Person Authentication, pp. 838–844 (2003)Google Scholar
  25. 25.
    Mallat, S.: Zero crossings of a wavelet transform. IEEE Trans. Inf. Theory 37(4), 1019–1033 (1992)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Park, C., Lee, J., Smith, M., Park, K.: Iris based personal authentication using a normalized directional energy feature. In: Proc. 4th Int. Conf. Audio- and Video-Based Biometric Person Authentication, pp. 224–232 (2003)Google Scholar
  27. 27.
    Lim, S., Lee, K., Byeon, O., Kim, T.: Efficient iris recognition through improvement of feature vector and classifier. ETRI J. 23(2), 61–70 (2001)CrossRefGoogle Scholar
  28. 28.
    Wang, Y., Han, J.Q.: Iris feature extraction using independent component analysis. In: Proc. 4th Int. Conf. Audio and Video Based Biometric Person Authentication, pp. 838–844 (2003)Google Scholar
  29. 29.
    Wang, Y., Han, J.Q.: Iris recognition using independent component analysis. In: Proc. of the Fourth Int. Conf. on Machine Learning and Cybernetics, Guangzhou (2005)Google Scholar
  30. 30.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Sys., Man., Cyber. 9, 62–66 (1979)CrossRefGoogle Scholar
  31. 31.
    Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging 13(1), 146–165 (2004)CrossRefGoogle Scholar
  32. 32.
    Trier, I.D., Taxt, T.: Evaluation of binarization methods for document images. IEEE Trans. on Pattern Analysis and Machine Intelligence (1995)Google Scholar
  33. 33.
    Zuo, J., Schmid, N.: An Automatic Algorithm for Evaluating the Precision of Iris Segmentation. In: IEEE Second Int. Conf. on Biometrics Theory, Applications and Systems (BTAS 2008), September 29 - October 1 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Rahib Abiyev
    • 1
  • Kemal Kilic
    • 1
  1. 1.Dept. of Computer EngineeringNear East UniversityNicosiaCyprus

Personalised recommendations