Skip to main content

Exploring a Quantum Theory with Graph Rewriting and Computer Algebra

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5625))

Abstract

It can be useful to consider complex matrix expressions as circuits, interpreting matrices as parts of a circuit and composition as the “wiring,” or flow of information. This is especially true when describing quantum computation, where graphical languages can vastly reduce the complexity of many calculations [3,9]. However, manual manipulation of graphs describing such systems quickly becomes untenable for large graphs or large numbers of graphs. To combat this issue, we are developing a tool called Quantomatic, which allows automated and semi-automated explorations of graph rewrite systems and their underlying semantics. We emphasise in this paper the features of Quantomatic that interact with a computer algebra system to discover graphical relationships via the unification of matrix equations. Since these equations can grow exponentially with the size of the graph, we use this method to discover small identities and use those identities as graph rewrites to expand the theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings from LiCS (Feburary 2004) arXiv:quant-ph/0402130v5

    Google Scholar 

  2. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R.: Teleporting an unknown quantum state via dual classical and EPR channels. Phys. Rev. Lett. (January 1993)

    Google Scholar 

  3. Coecke, B.: Kindergarten quantum mechanics (2005) arXiv:quant-ph/0510032v1

    Google Scholar 

  4. Coecke, B.: Introducing categories to the practicing physicist. Advanced Studies in Mathematics and Logic 30, 45–74 (2006) arXiv:0808.1032v1 [quant-ph]

    MATH  Google Scholar 

  5. Coecke, B., Duncan, R.: Interacting quantum observables. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 298–310. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Coecke, B., Edwards, B.: Three qubit entanglement analysed with graphical calculus. Technical Report PRG-RR-09-03, Oxford University Computing Laboratory (2009)

    Google Scholar 

  7. Coecke, B., Paquette, E.O., Pavlovic, D.: Classical and quantum structuralism. Semantic Techniques for Quantum Computation, p. 43 (October 2008)

    Google Scholar 

  8. Coecke, B., Paquette, E.O., Perdrix, S.: Bases in diagrammatic quantum protocols (August 2008) arXiv:0808.1029v1 [quant-ph]

    Google Scholar 

  9. Dixon, L., Duncan, R.: Extending graphical representations for compact closed categories with applications to symbolic quantum computation. AISC/MKM/Calculemus, pp. 77–92 (June 2008)

    Google Scholar 

  10. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(6) (November 2000)

    Google Scholar 

  11. Hannabuss, K.: An Introduction to Quantum Theory. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  12. Joyal, A., Street, R.: The geometry of tensor calculus I. Advances in Mathematics 88, 55–113 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kelly, M., Laplaza, M.L.: Coherence for compact closed categories. Journal of Pure and Applied Algebra 19, 193–213 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kissinger, A.: Graph rewrite systems for classical structures in dagger-symmetric monoidal categories. Master’s thesis, Oxford University (Feburary 2008)

    Google Scholar 

  15. Lack, S.: Composing props. Theory and Applications of Categories 13(9), 147–163 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Von Neumann, J., Beyer, R.T.: Mathematical foundations of quantum mechanics. Princeton University Press, Princeton (1996)

    Google Scholar 

  17. O’Madadhain, J., Fisher, D., Nelson, T.: JUNG: Java universal network/graph framework, http://jung.sourceforge.net

  18. Paquette, E.O.: Categorical quantum computation. PhD thesis, Université de Montréal (Feburary 2008)

    Google Scholar 

  19. Wolfram Research. Mathematica (2007)

    Google Scholar 

  20. Selinger, P.: Dagger compact closed categories and completely positive maps (extended abstract). Electronic Notes in Theoretical Computer Science 170, 139–163 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Selinger, P.: A survey of graphical languages for monoidal categories (2009), http://www.mscs.dal.ca/~selinger/papers.html

  22. Vicary, J.: A categorical framework for the quantum harmonic oscillator (Jun 2007), arXiv:0706.0711v2 [quant-ph]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kissinger, A. (2009). Exploring a Quantum Theory with Graph Rewriting and Computer Algebra. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds) Intelligent Computer Mathematics. CICM 2009. Lecture Notes in Computer Science(), vol 5625. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02614-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02614-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02613-3

  • Online ISBN: 978-3-642-02614-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics