Skip to main content

An Analysis of Gabor Detection

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5627))

Abstract

An elementary function that is now commonly referred to Gabor function, Gabor filter and Gabor wavelet was derived from uncertainty relation for information by Gabor to overcome the representation limit of Fourier analysis. Analyzing a signal by a Gabor filter in terms of convolution or spatial filtering, two pieces of information—phase and magnitude—can be obtained. In the paper, Gabor filter is considered as a Gabor atom detector. This analysis demonstrates that when the k-value defined as k = ∥ g ni  ∥ 2 / ∥ g nr  ∥ 2, where g nr and g ni are respectively the real and imaginary parts of a Gabor filter g n , is close to one, the target phase can be estimated by Gabor phase and the target magnitude can be estimated by Gabor magnitude. However, when the k-value decreases, the quality of this approximation also decreases. The corresponding error bounds are derived.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gabor, D.: Theory of Communication. Journal of Inst. Electr. Engi. 93, 429–457 (1946)

    Google Scholar 

  2. Ibrahim, A., Azimi-Sadjadi, M.R.: A Fast Learning algorithm for Gabor Transform. IEEE TIP 5, 171–175 (1996)

    Google Scholar 

  3. Daugman, J.G.: Uncertainty Relation For Resolution In Space, Spatial Frequency, And Orientation Optimized By Two-Dimensional Visual Cortical Filters. Journal of Optical America A 2, 1160–1169 (1985)

    Article  Google Scholar 

  4. Daugman, J.G.: Spatial Visual Channels in the Fourier Plane. Vision Research 24, 891–910 (1984)

    Article  Google Scholar 

  5. Webster, M.A., De Valois, R.L.: Relationship between Spatial-Frequency and Orientation Tuning of Striate-Cortex Cells. Journal of Optical Society America A 2, 1124–1132 (1985)

    Article  Google Scholar 

  6. Jones, J.P., Stepnoski, A., Palmer, L.A.: The Two-Dimensional Spectral Structure of Simple Receptive Fields in Cat Striate Cortex. Journal of Neurophysiology 58, 1212–1232 (1987)

    Google Scholar 

  7. Jones, J.P., Palmer, L.A.: An Evaluation of the Two-Dimensional Gabor Filter Model of Simple Receptive Fields in Cat Striate Cortex. Journal of Neurophysiology 58, 1233–1258 (1987)

    Google Scholar 

  8. DeAngelis, G.C., Ghose, G.M., Ohzawa, L., Freeman, R.D.: Functional Micro-Organization of Primary Visual Cortex: Receptive Field Analysis of Nearby Neurons. The Journal of Neuroscience 19, 4046–4064 (1999)

    Google Scholar 

  9. Lindenbaum, M., Fischer, M., Bruckstein, A.: On Gabor’s Contribution to Image Enhancement. Pattern Recognition 27, 1–8 (1994)

    Article  Google Scholar 

  10. Daugman, J.G.: Complete Discrete 2-D Gabor Transforms by Neural Networks for Image Analysis and Compression. IEEE Transactions on Acoustics, Speech and Signal Processing 36, 1169–1179 (1988)

    Article  MATH  Google Scholar 

  11. Bovik, A.C., Clark, M., Geisler, W.S.: Multichannel Texture Analysis Using Localized Spatial Filters. IEEE TPAMI 12, 55–73 (1990)

    Article  Google Scholar 

  12. Mehrotra, R., Namuduri, K.R., Ranganathan, N.: Gabor filter-based edge detection. Pattern Recognition 25, 1479–1494 (1992)

    Article  Google Scholar 

  13. Kong, A.W.K., Zhang, D., Kamel, M.: Analysis of Brute-Force Break-Ins of A Palmprint Authentication System. IEEE TSMC B 36, 1201–1205 (2006)

    Google Scholar 

  14. Weber, D.M., Casasent, D.P.: Quadratic Gabor Filters for Object Detection. IEEE TIP 10, 218–230 (2001)

    MATH  Google Scholar 

  15. Soares, J.V.B., Learndro, J.J.G., Cesar Jr., R.M., Jelinek, H.F., Cree, M.J.: Retinal Vessel Segmentation Using the 2-D Gabor Wavelet and Supervised Classification. IEEE Transactions on Medical Imaging 25, 1214–1222 (2006)

    Article  Google Scholar 

  16. Sun, Z., Bebis, G., Miller, R.: On-Road Vehicle Detection Using Evolutionary Gabor Filter Optimization. IEEE Transactions on Intelligent Transportation Systems 6, 125–137 (2005)

    Article  Google Scholar 

  17. Kalliomaki, I., Lampinen, J.: On Steerability of Gabor-Type Filters for Feature Extraction. Pattern Recognition Letters 28, 904–911 (2007)

    Article  Google Scholar 

  18. Choi, W.P., Tse, S.H., Wong, K.W., Lam, K.M.: Simplified Gabor Wavelets for Human Face Recognition. Pattern Recognition 41, 1186–1199 (2008)

    Article  MATH  Google Scholar 

  19. Young, I.T., van Vliet, L.J., van Ginkel, M.: Recursive Gabor Filtering. IEEE Transactions on Signal Processing 50, 2798–2805 (2002)

    Article  Google Scholar 

  20. Lee, T.S.: Image Representation Using 2D Gabor Wavelets. IEEE TPAMI 18, 959–971 (1996)

    Article  Google Scholar 

  21. Okajima, K.: Two-Dimensional Gabor-Type Receptive Field as Derived by Mutual Information Maximization. Neural Networks 11, 441–447 (1998)

    Article  Google Scholar 

  22. Yu, W., Sommer, G., Damiilidis, K., Duancan, J.S.: Using Skew Gabor Filter In Source Signal Separation And Local Spectral Orientation Analysis. Image and Vision Computing 23, 377–392 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kong, A.WK. (2009). An Analysis of Gabor Detection. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2009. Lecture Notes in Computer Science, vol 5627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02611-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02611-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02610-2

  • Online ISBN: 978-3-642-02611-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics