Skip to main content

Gene Regulation: Single-Molecule Chemical Physics in a Natural Context

  • Chapter
  • First Online:
Single Molecule Spectroscopy in Chemistry, Physics and Biology

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 96))

Summary

Single-molecule studies provide us with greater insights into the mechanistic details of chemical processes, but in natural biological systems, the deterministic formalism of ensemble kinetics has been considered to provide a sufficient phenomenology. The most striking exception to this view of the basis of systems biology is gene regulation. Most cells possess only one or two copies of any given gene. The proteins regulating these genes are also present in small numbers. Temporal averaging over DNA-protein binding events would return the problems of gene regulation to one of macroscopic kinetics, but this temporal averaging is not always adequate. The stability of genetic switches depends on the dynamics of individual gene binding events. A non-adiabatic formalism is required. In some models of gene switches, even more dramatically stochastic attractors apparently exist that have no deterministic counterparts. These attractors arise directly from the single-molecule nature of the gene and are analogous to extinction events in population biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Frauenfelder, S. Sligar, P.G. Wolynes, Science 254, 1598–1603 (1991)

    Article  ADS  Google Scholar 

  2. E.V. Russel, N.E. Israeloff, Nature 408, 695–698 (2000)

    Article  ADS  Google Scholar 

  3. R. Zondervan et al., Proc. Nat. Acad. Sci. USA. 104, 12628–12633 (2007)

    Article  ADS  Google Scholar 

  4. A.M. Boiron, P. Tamarat, B. Loomis, R. Brown, M. Orrit, Chem. Phys. 247, 119–132 (1999)

    Article  ADS  Google Scholar 

  5. J. Wang, P.G. Wolynes, Phys. Rev. Lett. 74, 4317–4320 (1995)

    Google Scholar 

  6. H.P. Lu, L.Y. Xun, X.S. Xie, Science 282, 1877–1882 (1998)

    Article  ADS  Google Scholar 

  7. L. Edman, R. Rigler, Proc. Natl. Acad. Sci. USA. 97, 8266–8271 (2000)

    Article  ADS  Google Scholar 

  8. B. Schuler, W. Eaton, Curr. Opin. Struct. Biol. 18, 16–26 (2008)

    Article  Google Scholar 

  9. W.J. Greenleaf, M.T. Woodside, S.M. Block, Annu. Rev. Biophys. Biomolec. Struct. 36, 171–190 (2007)

    Article  Google Scholar 

  10. F. Jacob, Mol. Biol. 3, 318 (1961)

    Article  Google Scholar 

  11. M.L. Delbrück, J. Chem. Phys. 8, 120 (1940)

    Article  ADS  Google Scholar 

  12. M. Sasai, P.G. Wolynes, Proc. Natl. Acad. Sci. USA. 100, 2374–2379 (2003)

    Article  ADS  Google Scholar 

  13. D. Chandler, P.G. Wolynes, J. Chem. Phys. 74, 4078–4095 (1981)

    Google Scholar 

  14. R.A. Marcus, Angew. Chem. 32, 1111–1121 (1993)

    Article  Google Scholar 

  15. N.E. Buchler, U. Gerland, T. Hwa, Proc. Natl. Acad. Sci. USA. 100, 5136–5141 (2003)

    Article  ADS  Google Scholar 

  16. J.E.M. Hornos, D. Schultz, G.C.P. Innocentini, A.M. Walczak, J. Wang, J.N. Onuchic, P.G. Wolynes, Phys. Rev. E. 72, 051907/1–5 (2005)

    Google Scholar 

  17. P.J. Choi, L. Cai, K. Frieda, S. Xie, Science 232, 442–446 (2008)

    Google Scholar 

  18. A.M. Walczak, J.N. Onuchic, P.G. Wolynes, Proc. Natl. Acad. Sci. USA. 102, 18926–18931 (2005)

    Article  ADS  Google Scholar 

  19. P.H. Richter, M. Eigen, Biophys. Chem. 2, 255–263 (1974)

    Google Scholar 

  20. O.G. Berg, R.G. Winter, P.H. von Hippel, Biochemistry. 20, 6929–6948 (1981)

    Article  Google Scholar 

  21. Y. Levy, J.N. Onuchic P.G. Wolynes, J. Am. Chem. Soc. 3, 738–739 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF grant to the Center for Theoretical Biological Physics. The wonderful collaborations with Masaki Sasai, Aleksandra Walczak, José Onuchic, Daniel Schultz, and J.E. Hornos are much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Wolynes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wolynes, P.G. (2010). Gene Regulation: Single-Molecule Chemical Physics in a Natural Context. In: Gräslund, A., Rigler, R., Widengren, J. (eds) Single Molecule Spectroscopy in Chemistry, Physics and Biology. Springer Series in Chemical Physics, vol 96. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02597-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02597-6_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02596-9

  • Online ISBN: 978-3-642-02597-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics