Skip to main content

The Cognitive Body: From Dynamic Modulation to Anticipation

  • Conference paper
Anticipatory Behavior in Adaptive Learning Systems (ABiALS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5499))

Included in the following conference series:

Abstract

Starting from the situated and embodied perspective on the study of cognition as a source of inspiration, this paper programmatically outlines a path towards an experimental exploration of the role of the body in a minimal anticipatory cognitive architecture. Cognition is here conceived and synthetically analyzed as a broadly extended and distributed dynamic process emerging from the interplay between a body, a nervous system and their environment. Firstly, we show how a non-neural internal state, crucially characterized by slowly changing dynamics, can modulate the activity of a simple neurocontroller. The result, emergent from the use of a standard evolutionary robotic simulation, is a self-organized, dynamic action selection mechanism, effectively operating in a context dependent way. Secondly, we show how these characteristics can be exploited by a novel minimalist anticipatory cognitive architecture. Rather than a direct causal connection between the anticipation process and the selection of the appropriate behavior, it implements a model for dynamic anticipation that operates via bodily mediation (bodily-anticipation hypothesis). This allows the system to swiftly scale up to more complex tasks never experienced before, achieving flexible and robust behavior with minimal adaptive cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Varela, F.J., Thompson, E.T., Rosch, E.: The Embodied Mind: Cognitive Science and Human Experience. MIT Press, Cambridge (1992)

    Google Scholar 

  2. Thelen, E., Smith, L.B.: A Dynamic Systems Approach to the Development of Cognition and Action. MIT Press, Cambridge (1996)

    Google Scholar 

  3. Clark, A.: Being There: Putting Brain, Body, and World Together Again. MIT Press, Cambridge (1997)

    Google Scholar 

  4. Chrisley, R., Ziemke, T.: Embodiment. In: Encyclopedia of Cognitive Science, pp. 1102–1108. McMillan, London (2002)

    Google Scholar 

  5. Ziemke, T., Zlatev, J., Frank, R.M. (eds.): Body, Language and Mind: Embodiment, vol. 1. Mouton de Gruyter, Berlin (2007)

    Google Scholar 

  6. Nolfi, S.: Power and limits of reactive agents. Neurocomputing 42(1-4), 119–145 (2002)

    Article  MATH  Google Scholar 

  7. Wiener, N.: Cybernetics, or Control and Communication in the Animal and the Machine. MIT Press, Cambridge (1965)

    Google Scholar 

  8. Ashby, W.R.: Design for a Brain: The Origin of Adaptive Behavior. Chapman ‘&’ Hall, London (1952)

    MATH  Google Scholar 

  9. Köhler, W.: Gestalt Psychology. Liveright (1947)

    Google Scholar 

  10. Gibson, J.J.: The Ecological Approach To Visual Perception. Houghton Mifflin (1979)

    Google Scholar 

  11. Van Gelder, T.: The dynamical hypothesis in cognitive science. Behavioral and Brain Sciences 21, 615–628 (2000)

    Google Scholar 

  12. Kelso, J.A.S.: Dynamic Patterns: The Self-organization of Brain and Behavior. MIT Press, Cambridge (1995)

    Google Scholar 

  13. Beer, R.D.: Parameter space structure of continuous-time recurrent neural networks neural networks. Neural Computation 18, 3009–3051 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Beer, R.D.: Dynamical approaches to cognitive science. Trends in Cognitive Sciences 4(3), 91–99 (2000)

    Article  MathSciNet  Google Scholar 

  15. Chiel, H., Beer, R.D.: The brain has a body: Adaptive behavior emerges from interactions of nervous system, body and environment. Trends in Neurosciences 20(12), 553–557 (1997)

    Article  Google Scholar 

  16. Suzuki, M., Floreano, D.: Enactive robot vision. Adaptive Behavior 16, 122–128 (2008)

    Article  Google Scholar 

  17. Parisi, D.: Internal robotics. Connection Science 16(4), 325–338 (2004)

    Article  Google Scholar 

  18. Ziemke, T.: On the role of emotion in biological and robotic autonomy. BioSystems 91, 401–408 (2008)

    Article  Google Scholar 

  19. Ziemke, T., Lowe, R.: On the role of emotion in embodied cognitive architectures: From organisms to robots. In: Cognitive computation (2009) (accepted)

    Google Scholar 

  20. Damasio, A.: The Feeling of What Happens: Body and Emotion in the Making of Consciousness. Harvest Books (2000)

    Google Scholar 

  21. Damasio, A.: Looking for Spinoza: Joy, Sorrow, and the Feeling Brain. Harcourt (2003)

    Google Scholar 

  22. Montebelli, A., Herrera, C., Ziemke, T.: On cognition as dynamical coupling: An analysis of behavioral attractor dynamics. Adaptive Behavior 16(2-3), 182–195 (2008)

    Article  Google Scholar 

  23. Montebelli, A., Herrera, C., Ziemke, T.: An analysis of behavioral attractor dynamics. In: Almeida e Costa, F. (ed.) Advances in Artificial Life: Proceedings of the 9th European Conference on Artificial Life, pp. 213–222. Springer, Berlin (2007)

    Chapter  Google Scholar 

  24. Strogatz, S.H.: Nonlinear Dynamics and Chaos. Westview Press, Cambridge (1994)

    Google Scholar 

  25. Rosen, R.: Anticipatory Systems. Pergamon Press, Oxford (1985)

    MATH  Google Scholar 

  26. Butz, M.V., Sigaud, O., Gérard, P.: Anticipatory behavior: Exploiting knowledge about the future to improve current behavior. In: Butz, M.V., Sigaud, O., Gérard, P. (eds.) Anticipatory Behavior in Adaptive Learning Systems. LNCS, vol. 2684, pp. 1–10. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  27. Butz, M.V., Pezzulo, G.: Benefits of anticipation in cognitive agents. In: Pezzulo, G., Butz, M.V., Castelfranchi, C., Falcone, R. (eds.) The Challenge of Anticipation: A Unifying Framework for the Analysis and Design of Artificial Cognitive Systems, pp. 45–62. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  28. Grush, R.: The emulation theory of representation: motor control, imagery, and perception. Behavioral and Brain Sciences 27, 377–442 (2004)

    Google Scholar 

  29. Barsalou, L.W.: Perceptual symbol systems. Behavioral and Brain Sciences 22, 577–660 (1999)

    Google Scholar 

  30. Barsalou, L.W.: Social embodiment. In: Ross, B.H. (ed.) The Psychology of Learning and Motivation, pp. 43–92. Academic Press, London (2003)

    Google Scholar 

  31. Butz, M.V.: How and why the brain lays the foundations for a conscious self. Constructivist Foundations 4(1), 1–42 (2008)

    MathSciNet  Google Scholar 

  32. Parisi, D.: Mente: i nuovi modelli della Vita Artificiale. Il Mulino, Bologna (1999)

    Google Scholar 

  33. Tani, J., Nolfi, S.: Learning to perceive the world as articulated: an approach for hierarchical learning in sensory-motor systems. Neural Networks 12(7-8), 1131–1141 (1999)

    Article  Google Scholar 

  34. Ito, M., Noda, K., Hoshino, Y., Tani, J.: Dynamic and interactive generation of object handling behaviors by a small humanoid robot using a dynamic neural network model. Neural Networks 19(3), 323–337 (2006)

    Article  MATH  Google Scholar 

  35. Ziemke, T., Hesslow, G., Jirenhed, D.A.: Internal simulation of perception: a minimal neuro-robotic model. Neurocomputing 68, 85–104 (2005)

    Article  Google Scholar 

  36. Schoenbaum, G., Chiba, A.A., Gallagher, M.: Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nature Neuroscience 1(2), 155–159 (1998)

    Article  Google Scholar 

  37. Haykin, S.: Neural networks: a comprehensive foundation. Prentice Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  38. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, Geoffrey, E.: Adaptive mixtures of local experts. Neural Computation 3(1), 79–87 (1991)

    Article  Google Scholar 

  39. Morse, A., Lowe, R., Ziemke, T.: Towards an enactive cognitive architecture. In: Proceedings of the 2008 International Conference on Cognitive Systems (2008)

    Google Scholar 

  40. Kiebel, S.J., Daunizeau, J., Friston, K.J.: A hierarchy of time-scales and the brain. PLoS Computational Biology 4(11) (2008)

    Google Scholar 

  41. Fusi, S., Asaad, W.F., Miller, E.K., Wang, X.J.: A neural circuit model of flexible sensorimotor mapping: Learning and forgetting on multiple timescales. Neuron 54(2), 319–333 (2007)

    Article  Google Scholar 

  42. Yamashita, Y., Tani, J.: Emergence of functional hierarchy in a multiple timescale neural network model: A humanoid robot experiment. PLoS Computational Biology 4(11) (2008)

    Google Scholar 

  43. Paine, R.W., Tani, J.: How hierarchical control self-organizes in artificial adaptive systems. Adaptive Behavior 13(3), 211–225 (2005)

    Article  Google Scholar 

  44. Maniadakis, M., Tani, J.: Dynamical systems account for meta-level cognition. In: Asada, M., Hallam, J.C.T., Meyer, J.-A., Tani, J. (eds.) SAB 2008. LNCS, vol. 5040, pp. 311–320. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  45. Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004)

    Article  Google Scholar 

  46. Maass, W., Natschlager, T., Markram, H.: Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation 14(11), 2531–2560 (2002)

    Article  MATH  Google Scholar 

  47. Melhuish, C., Ieropoulos, I., Greenman, J., Horsfield, I.: Energetically autonomous robots: food for thought. Autonomous Robots 21, 187–198 (2006)

    Article  Google Scholar 

  48. Tani, J., Ito, M.: Self-organization of behavioral primitives as multiple attractor dynamics: A robot experiment. IEEE Trans. on Systems, Man, and Cybernetics. Part B 33(4), 481–488 (2003)

    Article  Google Scholar 

  49. Tani, J.: Learning to generate articulated behavior through the bottom-up and the top-down interaction processes. Neural Networks 16, 11–23 (2003)

    Article  Google Scholar 

  50. Hesslow, G.: Conscious thought as simulation of behaviour and perception. Trends in Cognitive Sciences 6(6), 242–247 (2002)

    Article  Google Scholar 

  51. Bechara, A.: The role of emotion in decision-making: Evidence from neurological patients with orbitofrontal damage. Brain and Cognition (55), 30–40 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Montebelli, A., Lowe, R., Ziemke, T. (2009). The Cognitive Body: From Dynamic Modulation to Anticipation. In: Pezzulo, G., Butz, M.V., Sigaud, O., Baldassarre, G. (eds) Anticipatory Behavior in Adaptive Learning Systems. ABiALS 2008. Lecture Notes in Computer Science(), vol 5499. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02565-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02565-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02564-8

  • Online ISBN: 978-3-642-02565-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics