ABC: A Psychological Theory of Anticipative Behavioral Control

  • Joachim Hoffmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5499)


Almost all behavior is purposive or goal oriented. People behave, for example, in order to cross the street, to open a door, to ring a bell, to switch on a radio, to fill a cup with coffee, etc. Likewise, animals behave to attain various goals as for example to escape from a predator, to catch prey, to feed their offspring, etc. The ABC framework accords with the purposive character of almost all behavior by assuming that behavior is not determined by the current stimulation but by the desired or the ’to-be-produced’ effects. For this to work, behavioral acts have to be connected to the effects they produce in such a way that anticipations of effects gain the power to address the behavior that brings them about (often called the ideo-motor principle). Moreover, if action-effect contingencies systematically depend on the situational context, the formed action-effect relations have to be contextualized. Accordingly, the ABC framework assumes the formation of representations that preserve information about which effects can be realized by which behavior under which conditions. In the present article we review some of the empirical evidence in favor of the ABC approach and discuss the structures by which sensory anticipations might be transformed into the motor patterns that move the body to bring the desired effects about.


Behavioral Control Motor Command Psychological Theory Situational Context Imperative Stimulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ach, N.: Über den Willen. In: Ach, N. (ed.) Untersuchungen zur Psychologie und Philosophie. Quelle & Meyer, Leipzig (1913)Google Scholar
  2. 2.
    Bard, C., Turrell, Y., Fleury, M.: Deafferentation and pointing with visual double-step perturbations. Experimental Brain Research 125, 410–416 (1999)CrossRefGoogle Scholar
  3. 3.
    Beckers, T., De Houwer, J., Eelen, P.: Automatic integration of non-perceptual action effect features: The case of the associative affective Simon effect. Psychological Research 66, 166–173 (2002)CrossRefGoogle Scholar
  4. 4.
    Bernstein, N.A.: The co-ordination and regulation of movements. Pergamon Press, Oxford (1967)Google Scholar
  5. 5.
    Butz, M.V., Herbort, O., Hoffmann, J.: Exploiting redundancy for flexible behavior: Unsupervised learning in a modular sensorimotor control architecture. Psychological Review 114, 1015–1046 (2007)CrossRefGoogle Scholar
  6. 6.
    Butz, M.V., Sigaud, O., Pezzulo, G., Baldassarre, G. (eds.): ABiALS 2006. LNCS, vol. 4520. Springer, Heidelberg (2007)Google Scholar
  7. 7.
    Cole, J., Paillard, J.: Living without touch and peripheral information about body position and movement: Studies with deafferented subjects. In: Bermudez, J.L., Marcel, A.J. (eds.) The body and the self, pp. 245–266. MIT Press, Cambridge (1995)Google Scholar
  8. 8.
    Cole, J.: Pride and a Daily Marathon. MIT Press, Cambridge (1995)Google Scholar
  9. 9.
    Colwill, R.M., Rescorla, R.A.: Instrumental responding remains sensitive to reinforcer devaluation after extensive training. Journal of Experimental Psychology: Animal Behavior Processes 11, 520–536 (1985)Google Scholar
  10. 10.
    Dickinson, A.: Instrumental conditioning. In: Mackintosh, N. (ed.) Animal learning and cognition, pp. 45–79. Academic Press, San Diego (1994)CrossRefGoogle Scholar
  11. 11.
    Elsner, B., Hommel, B.: Effect anticipation and action control. Journal of Experimental Psychology: Human Perception and Performance 27, 229–240 (2001)Google Scholar
  12. 12.
    Elsner, B., Hommel, B.: Contiguity and contingency in action-effect learning. Psychological Research 68, 138–154 (2004)CrossRefGoogle Scholar
  13. 13.
    Gibson, J.J.: The Ecological Approach to Visual Perception. Lawrence Erlbaum Associates, Mahwah (1979)Google Scholar
  14. 14.
    Greenwald, A.: Sensory feedback mechanisms in performance control: with special reference to the ideo-motor mechanism. Psychological Review 77, 73–99 (1970)CrossRefGoogle Scholar
  15. 15.
    Harleß, E.: Der Apparat des Willens. Zeitschrift für Philosophie und philosophische Kritik 38, 50–73 (1861)Google Scholar
  16. 16.
    Heckhausen, H., Beckmann, J.: Intentional action and action slips. Psychological Review 97, 36–48 (1990)CrossRefGoogle Scholar
  17. 17.
    Herbart, J.F.: Psychologie als Wissenschaft neu gegründet auf Erfahrung, Metaphysik und Mathematik. In: Zweiter, analytischer Teil, August Wilhem Unzer, Königsberg, Germany (1825)Google Scholar
  18. 18.
    Herbort, O., Butz, M.V., Hoffmann, J.: Multimodal goal representations and feedback in hierarchical motor control. In: International Conference on Cognitive Systems CogSys 2008 (2008)Google Scholar
  19. 19.
    Herbort, O., Butz, M.V., Hoffmann, J.: Towards an adaptive hierarchical anticipatory behavioral control system. In: Castelfranchi, C., Balkenius, C., Butz, M.V., Ortony, A. (eds.) From Reactive to Anticipatory Cognitive Embodied Systems: Papers from the AAAI Fall Symposium, pp. 83–90. AAAI Press, Menlo Park (2005)Google Scholar
  20. 20.
    Herwig, A., Prinz, W., Waszak, F.: Two modes of sensorimotor integration in intention-based and stimulus-based actions. Quarterly Journal of Experimental Psychlogy 60, 1540–1554 (2007)CrossRefGoogle Scholar
  21. 21.
    Hick, W.E.: On the rate of gain of information. Quarterly Journal of Experimental Psychology 4, 11–26 (1952)CrossRefGoogle Scholar
  22. 22.
    Hoffmann, J., Berner, M., Butz, M.V., Herbort, O., Kiesel, A., Kunde, W., Lenhard, A.: Explorations of anticipatory behavioral control (ABC): A report from the cognitive psychology unit of the University of Würzburg. Cognitive Processing 8, 133–142 (2007)CrossRefGoogle Scholar
  23. 23.
    Hoffmann, J.: Vorhersage und Erkenntnis: Die Funktion von Antizipationen in der menschlichen Verhaltenssteuerung und Wahrnehmung. Anticipation and cognition: The function of anticipations in human behavioral control and perception. Hogrefe, Göttingen, Germany (1993)Google Scholar
  24. 24.
    Hoffmann, J.: Anticipatory behavioral control. In: Butz, M.V., Sigaud, O., Gérard, P. (eds.) Anticipatory Behavior in Adaptive Learning Systems. LNCS, vol. 2684, pp. 44–65. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  25. 25.
    Hoffmann, J., Sebald, A.: Lernmechanismen zum Erwerb verhaltenssteuernden Wissens [Learning mechanisms for the acquisition of knowledge for behavioral control]. Psychologische Rundschau 51, 1–9 (2000)CrossRefGoogle Scholar
  26. 26.
    Hoffmann, J., Sebald, A., Stöcker, C.: Irrelevant response effects improve serial learning in serial reaction time tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition 27, 470–482 (2001)Google Scholar
  27. 27.
    Hoffmann, J., Stöcker, C., Kunde, W.: Anticipatory control of actions. International Journal of Sport and Exercise Psychology 2, 346–361 (2004)CrossRefGoogle Scholar
  28. 28.
    Hommel, B.: The cognitive representation of action: Automatic integration of perceived action effects. Psychological Research 59, 176–186 (1996)CrossRefGoogle Scholar
  29. 29.
    Hommel, B.: Perceiving one’s own action - and what it leads to. In: Jordan, J.S. (ed.) Systems theory and apriori aspects of perception, pp. 143–179. North Holland, Amsterdam (1998)CrossRefGoogle Scholar
  30. 30.
    Hommel, B., Alonso, D., Fuentes, L.J.: Acquisition and generalization of action effects. Visual cognition 10, 965–986 (2003)CrossRefGoogle Scholar
  31. 31.
    Hommel, B., Müsseler, J., Aschersleben, G., Prinz, W.: The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences 24, 849–878 (2001)CrossRefGoogle Scholar
  32. 32.
    James, W.: The principles of psychology. Dover Publications, New York (1890)CrossRefGoogle Scholar
  33. 33.
    Jeannerod, M.: The neural and behavioral organization of goal-directed movements. Clarendon Press (1988)Google Scholar
  34. 34.
    Kalveram, K.T.: The inverse problem in cognitve, perceptual and proprioceptive control of sensorimotor behaviour: Towards a biologically plausible model of the control of aiming movements. International Journal of Sport and Exercise 2, 255–273 (2004)CrossRefGoogle Scholar
  35. 35.
    Kawato, M.: Internal models for motor control and trajectory planning. Current Opinion in Neurobiology 9, 718–727 (1999)CrossRefGoogle Scholar
  36. 36.
    Kiesel, A., Hoffmann, J.: Variable action effects: Response control by context-specific effect anticipations. Psychological Research 68, 155–162 (2004)CrossRefGoogle Scholar
  37. 37.
    Koch, I., Kunde, W.: Verbal response-effect compatibility. Memory and Cognition 30, 1297–1303 (2002)CrossRefGoogle Scholar
  38. 38.
    Kunde, W., Hoffmann, J., Zellmann, P.: The impact of anticipated action effects on action planning. Acta Psychologica 109, 137–155 (2002)CrossRefGoogle Scholar
  39. 39.
    Kunde, W.: Response-effect compatibility in manual choice reaction tasks. Journal of Experimental Psychology: Human Perception and Performance 27, 387–394 (2001)Google Scholar
  40. 40.
    Kunde, W.: Temporal response-effect compatibility. Psychological Research 67, 153–159 (2003)CrossRefGoogle Scholar
  41. 41.
    Kunde, W., Koch, I., Hoffmann, J.: Anticipated action effects affect the selection, initiation, and execution of actions. The Quarterly Journal of Experimental Psychology. Section A: Human Experimental Psychology 57, 87–106 (2004)CrossRefGoogle Scholar
  42. 42.
    Lenhard, A., Hoffmann, J., Sebald, A.: Intra- and intermanual transfer of adaptation to unnoticed virtual displacement under terminal and continuous visual feedback. Diploma Thesis, University of Würzburg (2002)Google Scholar
  43. 43.
    Lotze, H.R.: Medicinische Psychologie oder Physiologie der Seele. Weidmannsche Buchhandlung, Leipzig (1852)Google Scholar
  44. 44.
    Mandler, G.: Cognitive Psychology. An essay in cognitive science. Erlbaum, Hillsdale (1985)Google Scholar
  45. 45.
    Neisser, U.: Cognitive psychology. Appleton, New York (1967)Google Scholar
  46. 46.
    Newell, A., Simon, H.A.: GPS, a program that simulates human thought. In: Billing, H. (ed.) Lernende Automaten, pp. 109–124. Oldenbourg, München (1961)Google Scholar
  47. 47.
    Powers, W.T.: Behavior: The Control of Perception. Aldine de Gruyter, New York (1973)Google Scholar
  48. 48.
    Proteau, L., Marteniuk, R.G., Girouard, Y., Dugas, C.: On the type of information used to control and learn an aiming movement after moderate and extensive training. Human Movement Science 6, 181–199 (1987)CrossRefGoogle Scholar
  49. 49.
    Rescorla, R.A.: Associative relations in instrumental learning: The eighteenth Bartlett memorial lecture. Quarterly Journal of Experimental Psychology 43, 1–23 (1991)CrossRefGoogle Scholar
  50. 50.
    Restat, J.: Kognitive Kinästhetik: Die modale Grundlage des amodalen räumlichen Wissens. Pabst, Lengerich (1999)Google Scholar
  51. 51.
    Rosenbaum, D.A., Meulenbroek, R.G.J., Vaughan, J., Jansen, C.: Posture-based motion planning: Applications to grasping. Psychological Review 108, 709–734 (2001)CrossRefGoogle Scholar
  52. 52.
    Sainburg, R.L., Poizner, H., Ghez, C.: Loss of proprioception produces deficits in interjoint coordination. Journal of Neurophysiology 70, 2136–2147 (1993)Google Scholar
  53. 53.
    Sainburg, R.L., Wang, J.: Interlimb transfer of visuomotor rotations: independence of direction and final position information. Experimental Brain Research 145, 437–447 (2002)CrossRefGoogle Scholar
  54. 54.
    Shannon, C.E., Weaver, W.: The mathematical theory of communication. The University of Illinois Press, Urbana (1949)zbMATHGoogle Scholar
  55. 55.
    Simon, J.R., Rudel, A.P.: Auditory S-R compatibility: The effect of an irrelevant cue on information processing. Journal of Applied Psychology 51, 300–304 (1967)CrossRefGoogle Scholar
  56. 56.
    Stock, A., Stock, C.: A short history of ideo-motor action. Psychological Research 68, 176–188 (2004)CrossRefGoogle Scholar
  57. 57.
    Stock, A., Hoffmann, J.: Intentional fixation of behavioral learning or how R-E learning blocks S-R learning. European Journal of Cognitive Psychology 14, 127–153 (2002)CrossRefGoogle Scholar
  58. 58.
    Thorndike, E.L.: Animal intelligence. an experimental study of the associative processes in animal. Psychological Monographs 2(4, whole No. 8) (1898) Google Scholar
  59. 59.
    Turing, A.M.: Computing machinery and intelligence. Mind 59, 433–460 (1950)MathSciNetCrossRefGoogle Scholar
  60. 60.
    von Holst, E., Mittelstaedt, H.: Das Reafferenzprinzip. Naturwissenschaften 37, 464–476 (1950)CrossRefGoogle Scholar
  61. 61.
    von Neumann, J.: Die Rechenmaschine und das Gehirn. Oldenbourg, München (1958)zbMATHGoogle Scholar
  62. 62.
    Watson, J.B.: Psychology as a behaviorist views it. Psychological Review 20, 158–177 (1913)CrossRefGoogle Scholar
  63. 63.
    Wiener, N.: Cybernetics or control and communication in the animal and the machine. Wiley, New York (1948)Google Scholar
  64. 64.
    Wolpert, D.M., Ghahramani, Z.: Computational principles of movement neuroscience. Nature Neuroscience 3, 1212–1217 (2000)CrossRefGoogle Scholar
  65. 65.
    Ziessler, M., Nattkemper, D.: Effect anticipation in action planning. In: Hommel, W.P. (ed.) Attention and Performance XIX: Common mechanisms in perception and action, pp. 645–673. Oxford University Press, Oxford (2002)Google Scholar
  66. 66.
    Ziessler, M., Nattkemper, D., Frensch, P.A.: The role of anticipation and intention for the learning of effects of self-performed actions. Psychological Research 68, 163–175 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Joachim Hoffmann
    • 1
  1. 1.Department of PsychologyUniversity of WürzburgWürzburg

Personalised recommendations