Skip to main content

Space Perception through Visuokinesthetic Prediction

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5499))

Abstract

A model of visual space perception within the framework of the “perception through anticipation” approach is proposed. In this model, objects are localized by generating a simulated sequence of motor commands which would move the end effector of the agent from its current location to a location where it touches the object. Space perception arises whenever the agent knows how to move to the object. The main components of the model are a visuokinesthetic forward model for sensory prediction and a visual memory for novelty detection. Movement sequences are generated by the optimization method “differential evolution”. The approach was implemented and successfully tested on a robot arm setup in the domain of block pushing on a table surface. The results indicate that visuokinesthetic prediction is superior to purely visual prediction for an iterative internal simulation of future sensory states. Furthermore, it is demonstrated that the generated movement sequences encode the location of the target object in a straightforward way.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Battaglia-Mayer, A., Caminiti, R., Lacquaniti, F., Zago, M.: Multiple levels of representation of reaching in the parieto-frontal network. Cerebral Cortex 13(10), 1009–1022 (2003)

    Article  Google Scholar 

  2. Berthoz, A.: The Brain’s Sense of Movement. Harvard University Press, Cambridge (2000)

    Google Scholar 

  3. Gibson, J.J.: The Ecological Approach to Visual Perception. Houghton Mifflin Company, Boston (1979)

    Google Scholar 

  4. Grush, R.: The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences 27(3), 377–442 (2004)

    Google Scholar 

  5. Hebb, D.O.: The Organization of Behaviour. Wiley, New York (1949)

    Google Scholar 

  6. Hesslow, G.: Conscious thought as simulation of behaviour and perception. Trends in Cognitive Sciences 6(6), 242–247 (2002)

    Article  Google Scholar 

  7. Hoffmann, H.: Perception through visuomotor anticipation in a mobile robot. Neural Networks 20(1), 22–33 (2007)

    Article  MATH  Google Scholar 

  8. Hoffmann, H., Möller, R.: Unsupervised learning of a kinematic arm model. In: Kaynak, O., Alpaydin, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, pp. 463–470. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Hoffmann, H., Möller, R.: Action selection and mental transformation based on a chain of forward models. In: Schaal, S., Ijspeert, A., Billard, A., Vijayakumar, S., Hallam, J., Meyer, J.A. (eds.) From Animals to Animats 8, Proceedings of the Eighth International Conference on the Simulation of Adaptive Behavior, Los Angeles, CA, pp. 213–222. MIT Press, Cambridge (2004)

    Google Scholar 

  10. Hoffmann, H., Schenck, W., Möller, R.: Learning visuomotor transformations for gaze-control and grasping. Biological Cybernetics 93(2), 119–130 (2005)

    Article  MATH  Google Scholar 

  11. Hommel, B., Müsseler, J., Aschersleben, G., Prinz, W.: The theory of event coding: A framework for perception and action planning. Behavioral and Brain Sciences 24(5), 849–937 (2001)

    Article  Google Scholar 

  12. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology 160(1), 106–154 (1962)

    Article  Google Scholar 

  13. Kosslyn, S.M.: Image and Brain. MIT Press, Cambridge (1994)

    Google Scholar 

  14. Marr, D.: Vision: A Computational Approach. Freeman & Co, San Francisco (1982)

    Google Scholar 

  15. Möller, R.: Wahrnehmung durch Vorhersage — Eine Konzeption der handlungsorientierten Wahrnehmung. Ph.D thesis, Faculty of Computer Science and Automation, Ilmenau Technical University, Germany (1996)

    Google Scholar 

  16. Möller, R.: Perception through anticipation — a behavior-based approach to visual perception. In: Riegler, A., Peschl, M., von Stein, A. (eds.) Understanding Representation in the Cognitive Sciences, pp. 169–176. Plenum Academic/Kluwer Publishers, New York (1999)

    Chapter  Google Scholar 

  17. Möller, R., Hoffmann, H.: An extension of neural gas to local PCA. Neurocomputing 62, 305–326 (2004)

    Article  Google Scholar 

  18. Möller, R., Schenck, W.: Bootstrapping cognition from behavior — a computerized thought experiment. Cognitive Science 32(3), 504–542 (2008)

    Article  Google Scholar 

  19. Norman, J.: Two visual systems and two theories of perception: An attempt to reconcile the constructivist and ecological approaches. Behavioral and Brain Sciences 25(1), 73–144 (2002)

    Google Scholar 

  20. Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (1999)

    Google Scholar 

  21. Rizzolatti, G., Fadiga, L.: Grasping objects and grasping action meanings: The dual role of monkey rostroventral premotor cortex (area F5). In: Novartis Foundation Symposium, vol. 218, pp. 81–103 (1998)

    Google Scholar 

  22. Rolls, E.T., Tovee, M.J.: Processing speed in the cerebral-cortex and the neurophysiology of visual masking. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 257(1348), 9–15 (1994)

    Article  Google Scholar 

  23. Rumelhart, D.E., Hinton, G., Williams, R.: Learning internal representations by error propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel distributed processing: Explorations in the microstructure of cognition. Foundations, vol. 1, pp. 318–362. MIT Press, Cambridge (1986)

    Google Scholar 

  24. Schaal, S., Schweighofer, N.: Computational motor control in humans and robots. Current Opinion in Neurobiology 15(6), 675–682 (2005)

    Article  Google Scholar 

  25. Schenck, W.: Adaptive Internal Models for Motor Control and Visual Prediction. MPI Series in Biological Cybernetics. Logos Verlag, Berlin (2008)

    Google Scholar 

  26. Schenck, W., Sinder, D., Möller, R.: Combining neural networks and optimization techniques for visuokinesthetic prediction and motor planning. In: ESANN 2008 proceedings — European Symposium on Artificial Neural Networks, pp. 523–528. Bruges (Belgium), d-side publications (2008)

    Google Scholar 

  27. Sinder, D.: Roboterarm-Ansteuerung mit Hilfe von visuellen Vorwärtsmodellen, Diploma Thesis. Computer Engineering Group, Faculty of Technology, Bielefeld University (2006)

    Google Scholar 

  28. Storn, R., Price, K.: Differential evolution — a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Witt, J.K., Proffitt, D.R.: Action-specific influences on distance perception: A role for motor simulation. Journal of Experimental Psychology: Human Perception and Performance 34(6), 1479–1492 (2008)

    Google Scholar 

  30. Witt, J.K., Proffitt, D.R., Epstein, W.: Perceiving distance: A role of effort and intent. Perception 33(5), 577–590 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schenck, W. (2009). Space Perception through Visuokinesthetic Prediction. In: Pezzulo, G., Butz, M.V., Sigaud, O., Baldassarre, G. (eds) Anticipatory Behavior in Adaptive Learning Systems. ABiALS 2008. Lecture Notes in Computer Science(), vol 5499. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02565-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02565-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02564-8

  • Online ISBN: 978-3-642-02565-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics