Space Perception through Visuokinesthetic Prediction

  • Wolfram Schenck
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5499)


A model of visual space perception within the framework of the “perception through anticipation” approach is proposed. In this model, objects are localized by generating a simulated sequence of motor commands which would move the end effector of the agent from its current location to a location where it touches the object. Space perception arises whenever the agent knows how to move to the object. The main components of the model are a visuokinesthetic forward model for sensory prediction and a visual memory for novelty detection. Movement sequences are generated by the optimization method “differential evolution”. The approach was implemented and successfully tested on a robot arm setup in the domain of block pushing on a table surface. The results indicate that visuokinesthetic prediction is superior to purely visual prediction for an iterative internal simulation of future sensory states. Furthermore, it is demonstrated that the generated movement sequences encode the location of the target object in a straightforward way.


Visual State Sensory State Visual Memory Motor Command Movement Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Battaglia-Mayer, A., Caminiti, R., Lacquaniti, F., Zago, M.: Multiple levels of representation of reaching in the parieto-frontal network. Cerebral Cortex 13(10), 1009–1022 (2003)CrossRefGoogle Scholar
  2. 2.
    Berthoz, A.: The Brain’s Sense of Movement. Harvard University Press, Cambridge (2000)Google Scholar
  3. 3.
    Gibson, J.J.: The Ecological Approach to Visual Perception. Houghton Mifflin Company, Boston (1979)Google Scholar
  4. 4.
    Grush, R.: The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences 27(3), 377–442 (2004)Google Scholar
  5. 5.
    Hebb, D.O.: The Organization of Behaviour. Wiley, New York (1949)Google Scholar
  6. 6.
    Hesslow, G.: Conscious thought as simulation of behaviour and perception. Trends in Cognitive Sciences 6(6), 242–247 (2002)CrossRefGoogle Scholar
  7. 7.
    Hoffmann, H.: Perception through visuomotor anticipation in a mobile robot. Neural Networks 20(1), 22–33 (2007)CrossRefzbMATHGoogle Scholar
  8. 8.
    Hoffmann, H., Möller, R.: Unsupervised learning of a kinematic arm model. In: Kaynak, O., Alpaydin, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, pp. 463–470. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Hoffmann, H., Möller, R.: Action selection and mental transformation based on a chain of forward models. In: Schaal, S., Ijspeert, A., Billard, A., Vijayakumar, S., Hallam, J., Meyer, J.A. (eds.) From Animals to Animats 8, Proceedings of the Eighth International Conference on the Simulation of Adaptive Behavior, Los Angeles, CA, pp. 213–222. MIT Press, Cambridge (2004)Google Scholar
  10. 10.
    Hoffmann, H., Schenck, W., Möller, R.: Learning visuomotor transformations for gaze-control and grasping. Biological Cybernetics 93(2), 119–130 (2005)CrossRefzbMATHGoogle Scholar
  11. 11.
    Hommel, B., Müsseler, J., Aschersleben, G., Prinz, W.: The theory of event coding: A framework for perception and action planning. Behavioral and Brain Sciences 24(5), 849–937 (2001)CrossRefGoogle Scholar
  12. 12.
    Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology 160(1), 106–154 (1962)CrossRefGoogle Scholar
  13. 13.
    Kosslyn, S.M.: Image and Brain. MIT Press, Cambridge (1994)Google Scholar
  14. 14.
    Marr, D.: Vision: A Computational Approach. Freeman & Co, San Francisco (1982)Google Scholar
  15. 15.
    Möller, R.: Wahrnehmung durch Vorhersage — Eine Konzeption der handlungsorientierten Wahrnehmung. Ph.D thesis, Faculty of Computer Science and Automation, Ilmenau Technical University, Germany (1996)Google Scholar
  16. 16.
    Möller, R.: Perception through anticipation — a behavior-based approach to visual perception. In: Riegler, A., Peschl, M., von Stein, A. (eds.) Understanding Representation in the Cognitive Sciences, pp. 169–176. Plenum Academic/Kluwer Publishers, New York (1999)CrossRefGoogle Scholar
  17. 17.
    Möller, R., Hoffmann, H.: An extension of neural gas to local PCA. Neurocomputing 62, 305–326 (2004)CrossRefGoogle Scholar
  18. 18.
    Möller, R., Schenck, W.: Bootstrapping cognition from behavior — a computerized thought experiment. Cognitive Science 32(3), 504–542 (2008)CrossRefGoogle Scholar
  19. 19.
    Norman, J.: Two visual systems and two theories of perception: An attempt to reconcile the constructivist and ecological approaches. Behavioral and Brain Sciences 25(1), 73–144 (2002)Google Scholar
  20. 20.
    Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (1999)Google Scholar
  21. 21.
    Rizzolatti, G., Fadiga, L.: Grasping objects and grasping action meanings: The dual role of monkey rostroventral premotor cortex (area F5). In: Novartis Foundation Symposium, vol. 218, pp. 81–103 (1998)Google Scholar
  22. 22.
    Rolls, E.T., Tovee, M.J.: Processing speed in the cerebral-cortex and the neurophysiology of visual masking. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 257(1348), 9–15 (1994)CrossRefGoogle Scholar
  23. 23.
    Rumelhart, D.E., Hinton, G., Williams, R.: Learning internal representations by error propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel distributed processing: Explorations in the microstructure of cognition. Foundations, vol. 1, pp. 318–362. MIT Press, Cambridge (1986)Google Scholar
  24. 24.
    Schaal, S., Schweighofer, N.: Computational motor control in humans and robots. Current Opinion in Neurobiology 15(6), 675–682 (2005)CrossRefGoogle Scholar
  25. 25.
    Schenck, W.: Adaptive Internal Models for Motor Control and Visual Prediction. MPI Series in Biological Cybernetics. Logos Verlag, Berlin (2008)Google Scholar
  26. 26.
    Schenck, W., Sinder, D., Möller, R.: Combining neural networks and optimization techniques for visuokinesthetic prediction and motor planning. In: ESANN 2008 proceedings — European Symposium on Artificial Neural Networks, pp. 523–528. Bruges (Belgium), d-side publications (2008)Google Scholar
  27. 27.
    Sinder, D.: Roboterarm-Ansteuerung mit Hilfe von visuellen Vorwärtsmodellen, Diploma Thesis. Computer Engineering Group, Faculty of Technology, Bielefeld University (2006)Google Scholar
  28. 28.
    Storn, R., Price, K.: Differential evolution — a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4), 341–359 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Witt, J.K., Proffitt, D.R.: Action-specific influences on distance perception: A role for motor simulation. Journal of Experimental Psychology: Human Perception and Performance 34(6), 1479–1492 (2008)Google Scholar
  30. 30.
    Witt, J.K., Proffitt, D.R., Epstein, W.: Perceiving distance: A role of effort and intent. Perception 33(5), 577–590 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Wolfram Schenck
    • 1
  1. 1.Computer Engineering Group, Faculty of TechnologyBielefeld UniversityBielefeldGermany

Personalised recommendations