Advertisement

Collision-Avoidance Characteristics of Grasping

Early Signs in Hand and Arm Kinematics
  • Janneke Lommertzen
  • Eliana Costa e Silva
  • Raymond H. Cuijpers
  • Ruud G. J. Meulenbroek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5499)

Abstract

Grasping an object successfully implies avoiding colliding into it before the hand is closed around the object. The present study focuses on prehension kinematics that typically reflect collision-avoidance characteristics of grasping movements. Twelve participants repeatedly grasped vertically-oriented cylinders of various heights, starting from two starting positions and performing the task at two different speeds. Movements of trunk, arm and hand were recorded by means of a 3D motion-tracking system. The results show that cylinder-height moderated the approach phase as expected: small cylinders induced grasps from above whereas large cylinders elicited grasps from the side. The collision-avoidance constraint proved not only to be accommodated by aperture overshoots but its effects already showed up early on as differential adaptations of the distal upper limb parameters. We discuss some implications of the present analysis of grasping movements for designing anthropomorphic robots.

Keywords

Collision Avoidance Obstacle Avoidance Experimental Brain Research Start Location Target Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Butz, M.V., Herbort, O., Hoffmann, J.: Exploiting redundancy for flexible behavior: unsupervised learning in a modular sensorimotor control architecture. Psychological Review 114(4), 1015–1046 (2007)CrossRefGoogle Scholar
  2. 2.
    Bicho, E.: Dynamic Approach to Behavior-Based Robotics. Shaker-Verlag (2000)Google Scholar
  3. 3.
    Bouwhuisen, C.F., Meulenbroek, R.G.J., Thomassen, A.J.W.M.: A 3D motion-tracking method in graphonomic research: possible applications in future handwriting recognition studies. Pattern Recognition 35, 1039–1047 (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Craig, J.J.: Introduction to robotics: mechanics and control. Addison-Wesley, Reading (1998)Google Scholar
  5. 5.
    Cuijpers, R.H., Smeets, J.B.J., Brenner, E.: On the relation between object shape and grasping kinematics. Journal of Neurophysiology 91(6), 2598–2606 (2004)CrossRefGoogle Scholar
  6. 6.
    Edelman, S., Flash, T.: A model of handwriting. Biological Cybernetics 57(1-2), 25–36 (1987)CrossRefGoogle Scholar
  7. 7.
    Elsinger, C.L., Rosenbaum, D.A.: End Posture selection in manual positioning: Evidence for feedforward modelling based on a movement choice methos. Experimental Brain Research 152, 499–509 (2003)CrossRefGoogle Scholar
  8. 8.
    Erlhagen, W., Mukovskiy, A., Bicho, E., Panin, G., Kiss, C., Knoll, A., Van Schie, H.T., Bekkering, H.: Goal-directed imitation for robots: A bio-inspired appraoch to action understanding and skill learning. Robotics and autonomous systems 54(4), 353–360 (2006)CrossRefGoogle Scholar
  9. 9.
    Fiorini, P., Shiller, Z.: Time Optimal Trajectory Planning in Dynamic Environments. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 1553–1558 (1996)Google Scholar
  10. 10.
    Fischer, M.H., Rosenbaum, D.A., Vaughan, J.: Speed and sequential effects in reaching. Journal of Experimental Psychology-Human Perception and Performance 23(2), 404–428 (1997)CrossRefGoogle Scholar
  11. 11.
    Galicki, M.: Robotics and Automation. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, vol. 1, pp. 101–106 (1998)Google Scholar
  12. 12.
    Gréa, H., Desmurget, M., Prablanc, C.: Postural invariance in three-dimensional reaching and grasping movements. Experimental Brain Research 134, 155–162 (2000)CrossRefGoogle Scholar
  13. 13.
    Iossifidis, I., Schöner, G.J.: Dynamical Systems Approach for the Autonomous Avoidance of Obstacles and Joint-limits for an Redundant Robot Arm. In: Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems, pp. 508–585 (2006)Google Scholar
  14. 14.
    Jeannerod, M. (ed.): Intersegmental coordination during reaching at natural visual objects. Attention and Performace. Erlbaum, Hillsdale (1981)Google Scholar
  15. 15.
    Jeannerod, M.: The Timing of Natural Prehension Movements. Journal of Motor Behavior 16, 235–254 (1984)CrossRefGoogle Scholar
  16. 16.
    Khatib, O.: Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. The International Journal of Robotics Research 5(1), 90–98 (1986)CrossRefGoogle Scholar
  17. 17.
    Klein Breteler, M.D., Meulenbroek, R.G.J.: Modeling 3D object manipulation: synchronous single-axis joint rotations? Experimental Brain Research 168(3), 395–409 (2006)CrossRefGoogle Scholar
  18. 18.
    Kritikos, A., Bennett, K.M.B., Dunai, J., Castiello, U.: Interference from distractors in reach-to-grasp movements. Quarterly Journal of Experimental Psychology Section a-Human Experimental Psychology 53(1), 131–151 (2000)CrossRefGoogle Scholar
  19. 19.
    Latombe, J.: Motion Planning: A journey of robots. molecules, digital actors, and other artifacts. International Journal of Robotics Research, 1119–1128 (1999)Google Scholar
  20. 20.
    Meegan, D.V., Tipper, S.P.: Reaching into cluttered visual environments: spatial and temporal influences of distracting objects. Quarterly Journal of Experimental Psychology 51(2), 225–249 (1998)CrossRefGoogle Scholar
  21. 21.
    Meulenbroek, R.G.J., Rosenbaum, D.A., Jansen, C., Vaughan, J., Vogt, S.: Multijoint grasping movements - Simulated and observed effects of object location, object size, and initial aperture. Experimental Brain Research 138(2), 219–234 (2001)CrossRefGoogle Scholar
  22. 22.
    Osheron, D.N., Kosslyn, S.M., Hollerbach, J.M. (eds.): Visual Cognition in Action: an Invitation to Cognitive Science. MIT Press, Cambridge (1990)Google Scholar
  23. 23.
    Park, J.: Optimal Motion Planning for Manipulator Arms Using Nonlinear Programming. In: Huat, L.K. (ed.) Industrial Robotics, Programming, Simulation and Applications, pp. 256–272. pIV pro literatur Verlag Robert Mayer-Scholz (2006)Google Scholar
  24. 24.
    Paulignan, Y., Frak, V.G., Toni, I., Jeannerod, M.: Influence of object position and size on human prehension movements. Experimental Brain Research 114, 226–234 (1997)CrossRefGoogle Scholar
  25. 25.
    Rosenbaum, D.A.: Human Motor Control. Academic Press, San Diego (1990)Google Scholar
  26. 26.
    Rosenbaum, D.A., Meulenbroek, R.G.J., Vaughan, J.: Planning Reaching and Grasping Movements: Theroretical Premises and Practical Implications. Motor Control. 2, 99–115 (2001)CrossRefGoogle Scholar
  27. 27.
    Rosenbaum, D.A., Meulenbroek, R.G.J., Vaughan, J.: Coordination of reaching and grasping by capitalizing on obstacle avoidance and other constraints. Experimental Brain Research 128(1-2), 92–100 (1999)CrossRefGoogle Scholar
  28. 28.
    Rosenbaum, D.A., Meulenbroek, R.G.J., Vaughan, J., Jansen, C.: Posture-based motion planning: Applications to grasping. Psychological Review 108(4), 709–734 (2001)CrossRefGoogle Scholar
  29. 29.
    Silva, R., Bicho, E., Erlhagen, W.: AROS: An anthropomorphic robot for human-robot interaction and coordination studies. In: Proc. of the Portuguese 8th Conference on Automatic Control - Controlo 2008, pp. 819–826 (2008)Google Scholar
  30. 30.
    Smeets, J.B.J., Brenner, E.: A New View on Grasping. Motor Control 3, 237–271 (1999)CrossRefGoogle Scholar
  31. 31.
    Smeets, J.B.J., Brenner, E.: Independent movements of the digits in grasping. Experimental Brain Research 139, 92–100 (2001)CrossRefGoogle Scholar
  32. 32.
    Soechting, J.F., Buneo, C.A., Herrmann, U., Flanders, M.: Moving Effortlessly in 3-Dimensions: Does Donders-Law Apply to Arm Movement. Journal of Neuroscience 15(9), 6271–6280 (1995)Google Scholar
  33. 33.
    Vaughan, J., Rosenbaum, D.A., Meulenbroek, R.G.J.: Planning Reaching and Grasping Movements: The Problem of Obstacle Avoidance. Motor Control 2, 116–135 (2001)CrossRefGoogle Scholar
  34. 34.
    Vaughan, J., Rosenbaum, D.A., Meulenbroek, R.G.J.: Modeling Reching and Manipulating in 2- and 3-D Workspaces: The Posture-Based Model. ICDL, Bloomington (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Janneke Lommertzen
    • 1
  • Eliana Costa e Silva
    • 2
  • Raymond H. Cuijpers
    • 1
  • Ruud G. J. Meulenbroek
    • 1
  1. 1.Nijmegen Institute for Cognition and InformationRadboud University NijmegenNijmegenThe Netherlands
  2. 2.Department of Industrial ElectronicsUniversity of MinhoGuimarãesPortugal

Personalised recommendations