Advertisement

A Tool for Analyzing Categorical Data Visually with Granular Representation

  • Kousuke Shiraishi
  • Kazuo Misue
  • Jiro Tanaka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5618)

Abstract

Categorical data appears in various places, and dealing with it has been a major concern in analysis fields. However, representing not only global trends but also local trends of data simultaneously by conventional techniques is difficult. We propose a visualization method called “granular representation” for analyzing categorical data visually. Our approach visually represents data as a set of objects and allows intuitive analysis instead of the traditional way with tables of numbers. We developed a tool by integrating granular representation and bar charts. The effectiveness of the tool is demonstrated using real data about media consumption.

Keywords

categorical data visualization multi-dimensional analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Friendly, M.: Visualizing Categorical Data. Sas Inst. (2000)Google Scholar
  2. 2.
    Friendly, M.: Mosaic displays for multi-way contingency tables. American Statistical Association 89(425), 190–200 (1994)CrossRefGoogle Scholar
  3. 3.
    Kolatchm, E., Weinstein, B.C.: Dynamic visualization of categorical data using treemaps (2001), http://www.cs.umd.edu/class/spring2001/cmsc838b/Project/Kolatch_Weinstein/index.html
  4. 4.
    Johnson, B., Shneiderman, B.: Treemaps: A Space-Filling Approach to the Visualization of Hierarchical Information Structures. In: Proceedings of IEEE Information Visualization 1991, pp. 275–282 (1991)Google Scholar
  5. 5.
    Schonlau, M.: Visualizing Categorical Data Arising in the Health Sciences Using Hammock Plots. In: Proceedings of the Section on Statistical Graphics, American Statistical Association (2003)Google Scholar
  6. 6.
    Card, S.K., Mackinlay, J.D., Shneiderman, B.: Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann Pub., San Francisco (1999)Google Scholar
  7. 7.
    Yi, J.S., Ponder, R.M., Stasko, J., Jacko, J.: Dust & Magnet: multivariate information visualization using a magnet metaphor. Information Visualization 4, 239–256 (2005)Google Scholar
  8. 8.
    Johansson, S., Jern, M., Johansson, J.: Interactive Quantification of Categorical Variables in Mixed Data Sets. In: Proceedings of IEEE International Conference on Information Visualization (IV 2008), pp. 3–10 (2008)Google Scholar
  9. 9.
    Rosario, G.E., Rundensteiner, E.A., Brown, D.C., Ward, M.O., Huang, S.: Mapping nominal values to numbers for effective visualization. In: Proceedings of the IEEE Symposium on Information Visualization 2003 (INFOVIS 2003), pp. 80–95 (2003)Google Scholar
  10. 10.
    Biennial Media Consumption 2006, Pew Research Center Data Archive (2006), http://people-press.org/dataarchive/

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Kousuke Shiraishi
    • 1
  • Kazuo Misue
    • 1
  • Jiro Tanaka
    • 1
  1. 1.Department of Computer ScienceUniversity of TsukubaTsukubaJapan

Personalised recommendations