Advertisement

Evaluating the Effectiveness and the Efficiency of a Vector Image Search Tool

  • Patrizia Di Marco
  • Tania Di Mascio
  • Daniele Frigioni
  • Massimo Gastaldi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5618)

Abstract

In this paper we develop VISTO (Vector Images Search TOol), along two directions: (1) we present a new interface for VISTO which is more sophisticated than the original one, since it has been developed having in mind the users and their retrieval requests; (2) we provide a much deeper evaluation of the effectiveness and the efficiency of VISTO in the specific domain of the Blissymbolic images.

Keywords

Image Retrieval Evaluation Methodology Content Base Image Retrieval Relevant Image Real User 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chim, Y.C., Kassim, A.A., Ibrahim, Y.: Character recognition using statistical moments. Image and Vision Computing 17, 299–307 (1997)CrossRefGoogle Scholar
  2. 2.
    de Vries, A.P.: The role of evaluation in the development of content-based retrieval techniques Google Scholar
  3. 3.
    Eakins, J.P., Boardman, J.M., Graham, M.E.: Similarity retrieval of trademark images. Multimedia, IEEE 5(2), 53–63 (1998)CrossRefGoogle Scholar
  4. 4.
    Heesch, D., Ruger, S.: Combining features for content-based sketch retrieval: a comparative evaluation of retrieval performance. IEEE Transaction on Image ProcessingGoogle Scholar
  5. 5.
    Hu, M.K.: Visual pattern recognition by moments invariants. IRE Transactions on Information Theory 8, 179–187 (1962)zbMATHGoogle Scholar
  6. 6.
    Huang, T., Mehrotra, S., Ramchandran, K.: Multimedia analysis and retrieval system (MARS) project. In: Data Processing Clinic (1996)Google Scholar
  7. 7.
    Koskela, M., Laasonen, J., Laakso, S., Oja, E.: Evaluating the performance of content based imag retrieval system. In: Laurini, R. (ed.) VISUAL 2000. LNCS, vol. 1929, pp. 430–441. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Liu, W., Su, Z., Li, S., Zhang, H.: A performance evaluation protocol for content-based image retrieval algorithms/systems (2001)Google Scholar
  9. 9.
    Di Mascio, T., Francesconi, M., Frigioni, D., Tarantino, L.: Tuning a CBIR system for vector images: The interface support. In: Proceedings of Working Conference on Advanced Visual Interfaces (AVI 2004), pp. 425–428. ACM, New York (2004)CrossRefGoogle Scholar
  10. 10.
    Di Mascio, T., Frigioni, D., Tarantino, L.: Evaluation of VISTO: the new vector image search tool. In: Jacko, J.A. (ed.) HCI 2007. LNCS, vol. 4552, pp. 836–845. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Di Mascio, T., Frigioni, D., Tarantino, L.: A visual environment for tuning content-based vector image retrieval. In: Lawrence Erlbaum Associates (ed.) Proceedings of HCI 2005, Adjunctive Proceedings (2005)Google Scholar
  12. 12.
    Niblack, W., Barber, R.: The qbic project: Querying images by content using color, texture and shape. In: Proceedings of Conference on Storage and Retrieval for Image and Video Databases, pp. 173–187 (1993)Google Scholar
  13. 13.
    Ogle, V.E., Stonebraker, M.: Chabot: Retrieval from a relational database of images. IEEE Computer 28(9), 40–48 (1995)CrossRefGoogle Scholar
  14. 14.
    Smith, J.R., Chang, S.-F.: Visualseek: A fully automated content-based image query system. ACM Multimedia, 87–98 (1996)Google Scholar
  15. 15.
    Smith, J.R.: Image retrieval evaluation. In: IEEE WorkShop on Content-Based Access of Image and Video Libreries (June 1998)Google Scholar
  16. 16.
    Veltkamp, R.C., Tanase, M.: A survey of content-based image retrieval systems. In: Proc. of Content-based image and video retrieval, pp. 47–101. Kluwer Academic Publishers, Dordrecht (2002)CrossRefGoogle Scholar
  17. 17.
    Yang, L., Albregtsen, F.: Fast computation of invariant geometric moments: a new method giving correct results. In: Proceedings of IEEE International Conference on Pattern Recognition, pp. 201–204 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Patrizia Di Marco
    • 1
  • Tania Di Mascio
    • 1
  • Daniele Frigioni
    • 1
  • Massimo Gastaldi
    • 1
  1. 1.Department of Electrical and Information EngineeringUniversity of L’AquilaPoggio di RoioItaly

Personalised recommendations