Advertisement

Interactive Object Segmentation System from a Video Sequence

  • Guntae Bae
  • Sooyeong Kwak
  • Hyeran Byun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5618)

Abstract

In this paper, we present an interactive object segmentation system form video, such as TV products and films, for converting 2D to 3D contents. It is focused on reducing the processing time for the object segmentation, increasing the usability. The proposed system is consist of three steps which are trimap generation based on polygon and object segmentation using Graph Cut algorithm and refinement by a user interfaces (UI) based on rectangle and local features. It makes it easy to get object segmentation rapidly. It is also helpful to create 3D contents.

Keywords

Object Segmentation interactive System trimap generation trimap estimation Graph Cut 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mortensen, E.N., Barrett, W.A.: Intelligent scissors for image composition. In: Proceedings of ACM SIGGRAPH 1995, pp. 191–198 (1995)Google Scholar
  2. 2.
    Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images. In: Proceedings of ICCV 2001, vol. 1, pp. 105–112 (2001)Google Scholar
  3. 3.
    Boykov, Y., Kolmogorov, V.: An experimental comparision of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)CrossRefGoogle Scholar
  4. 4.
    Chuang, Y.-Y., Curless, B., Salesin, D., Szeliski, R.: A Bayesian Approach to Digital in Matting. In: Proceeding of IEEE Computer Vision and Pattern Recognition, pp. 264–271 (2001)Google Scholar
  5. 5.
    Grady, L.: Random walks for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence (2004)Google Scholar
  6. 6.
    Wang, J., Cohen, M.-F.: Optimized color sampling for robust matting. In: Proceedings of IEEE Computer Vision and Pattern Recognition, pp. 264–271 (2007)Google Scholar
  7. 7.
    Li, Y., Sun, J., Tang, C.-K., Shum, H.-Y.: Lazy Snapping. ACM Transaction on Graphics (SIGGRAPH) (2004)Google Scholar
  8. 8.
    Rother, C., Kolmogorov, V., Blake, A.: GrabCut – Interactive Foreground Extraction using Iterated Graph Cuts. ACM Transaction on Graphics (SIGGRAPH) (2004)Google Scholar
  9. 9.
    Wang, J., Agrawala, M., Cohen, M.-F.: Soft Scissors: An Interactive Tool for Realtime High Quality Matting. ACM Transaction on Graphics (SIGGRAPH) (2007)Google Scholar
  10. 10.
    Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721–741 (1984)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Guntae Bae
    • 1
  • Sooyeong Kwak
    • 1
  • Hyeran Byun
    • 1
  1. 1.Department of Computer ScienceYonsei UniversitySeoulKorea

Personalised recommendations