Adaptive Visual Clustering for Mixed-Initiative Information Structuring

  • Hakan Duman
  • Alex Healing
  • Robert Ghanea-Hercock
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5617)


Cyclone is a mixed-initiative and adaptive clustering and structure generation environment which is capable of learning categorization behavior through user interaction as well as conducting auto-categorization based on the extracted model. The strength of Cyclone resides in its integration of several visualization and interface techniques with data mining and AI learning processes. This paper presents the intuitive visual interface of Cyclone which empowers the user to explore, analyze, exploit and structure unstructured information from various sources generating a personalized taxonomy in real-time and on-the-fly.


Information Visualization Data Mining Human-Computer Interaction Machine Learning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gants, J., Chute, C., Manfrediz, A., Minton, S., Reinsel, D., Schlichting, W., Toncheva, A.: The Diverse and Exploding Digital Universe – An Updated Forecase of Worldwide Information Growth Through 2011, IDC White Paper (2008)Google Scholar
  2. 2.
    Horvitz, E.: Principles of Mixed-Initiative User Interfaces. In: ACM conference on Human Factors in Computing Systems (CHI 1999), pp. 159–166 (1999)Google Scholar
  3. 3.
    Beale, R.: Supporting serendipity: Using ambient intelligence to augment user exploration for data mining and web browsing. J. of Human-Computer Studies 65, 421–433 (2007)CrossRefGoogle Scholar
  4. 4.
    Ferreira de Oliveira, M.C., Levkowitz, H.: From Visual Data Exploration to Visual Data Mining: A Survey. IEEE Transactions on Visualization and Computer Graphics 9, 378–394 (2003)CrossRefGoogle Scholar
  5. 5.
    Zhou, Y.: On Interactive Data Mining. In: Encyclopedia of Data Warehousing and Mining, vol. 2, pp. 1085–1090. Idea Group Inc. (2008)Google Scholar
  6. 6.
    Shneiderman, B.: Inventing Discovery Tools: Combining Information Visualization with Data Mining. Information Visualization 1, 5–12 (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    Xu, R., Wunsch II, D.: Survey of Clustering Algorithms. IEEE Transactions on Neural Networks 16, 645–678 (2005)CrossRefGoogle Scholar
  8. 8.
    Gates, S.C., Teiken, W., Chen, K.-S.: Taxonomies by the numbers: building high-performance taxonomies. In: 14th ACM International Conference on Information and Knowledge Management, pp. 568–577 (2005)Google Scholar
  9. 9.
    Sanchez, D., Moreno, A.: Automatic Generation of Taxonomies from the WWW. In: Karagiannis, D., Reimer, U. (eds.) PAKM 2004. LNCS, vol. 3336, pp. 208–219. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Wetzker, R., Alpcan, T., Buckhage, C., Umbrath, W., Albayrak, S.: An unsupervised hierarchical approach to document categorization. In: 2007 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 482–486 (2007)Google Scholar
  11. 11.
    Lan, S.C., Al-Hawamdeh, S.: Taxonomy-Building Tools: An Investigative Study. J. Informatoin & Knowledge Management. 2, 63–77 (2003)CrossRefGoogle Scholar
  12. 12.
    Wolin. B.: Method for Automatic Categorization of Items. US Patent 1 160 52 (2001)Google Scholar
  13. 13.
    Rostoker, C.: Interactive Visualization of the Market Graph. Technical report, University of British Columbia (2005)Google Scholar
  14. 14.
    DesJardins, M., Ferraioli, J.: Interactive Visual Clustering. In: 12th International Conference on Intelligent User Interfaces (2007)Google Scholar
  15. 15.
    Duman, H., Healing, A., Ghanea-Hercock, R.: An Intelligent Agent Approach for Visual Information Structure Generation. In: 2009 IEEE Symposium on Intelligent Agents, Nashville, Tennessee (2009)Google Scholar
  16. 16.
    Eades, P., Huang, M.L.: Navigating Clustered Graphs using Force-Directed Methods. J. Graph Algorithms and Applications 4, 157–181 (2000)CrossRefzbMATHGoogle Scholar
  17. 17.
    Ghanea-Hercock, R., Gelenbe, E., Jennings, N.R., Smith, O., Allsopp, D.N., Healing, A., Duman, H., Sparks, S., Karunatillake, N.C., Vytelingum, P.: Hyperion - Next Generation Battlespace Information Services. Computer Journal 50, 632–645 (2007)CrossRefGoogle Scholar
  18. 18.
    Healing, A., Ghanea-Hercock, R., Duman, H., Jacob, M.: Nexus: Self-organising Agent-based Peer-to-Peer Middleware for Battlespace Support. Defence Industry Applications of Autonomous Agents and Multi-agent Systems, pp. 1–13 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hakan Duman
    • 1
  • Alex Healing
    • 1
  • Robert Ghanea-Hercock
    • 1
  1. 1.British Telecommunications plcIpswichUnited Kingdom

Personalised recommendations