Skip to main content

Polyamines and Plant Adaptation to Saline Environments

  • Chapter
  • First Online:
Desert Plants

Abstract

Polyamines are universal organic polycations implicated in a wide array of fundamental processes in plants, ranging from signalling, genome expression, and plant growth and development, to plant adaptation to abiotic stresses. Stress-induced accumulation of polyamines often correlates with improvements in plant tolerance. Polyamines can protect nucleic acids and proteins and modulate the functions of macromolecules under extreme environments. Polyamines are also regulators of expression of genes encoding stress proteins. They possess antioxidant properties. Taken together, these recent findings have promoted intense efforts to characterise in detail the mechanisms of regulation of polyamine homeostasis, and to elucidate realisation of their multifaceted role in plants under stress. However, the molecular mechanisms underlying polyamine participation in plant adaptation to stress remain incompletely understood. In order to better understand the role of polyamines in plant adaptation, we focus on data concerning gene expression obtained by molecular biology methods using natural salt-tolerant species (halophytes) and also mutant and transgenic plants manifesting a high tolerance to salinity. The restriction of plant growth and productivity caused by salinity is especially acute in arid and semi-arid regions. In these regions, the influence of salt stress is aggravated by the additional action of other xerothermic factors, in particular drought and high temperature. In this chapter, particular emphasis will be paid to the possible role of polyamines in ameliorating the detrimental effects of salinity on plants during adaptation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DO, Yang SF (1979) Ethylene biosynthesis identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in conversion of methionine to ethylene. Proc Natl Acad Sci USA 76:170–174

    Article  CAS  PubMed  Google Scholar 

  • Alcázar R, Cuevas JC, Patron M, Altabella T, Tiburcio F (2006) Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana. Physiol Plant 128:448–455

    Article  CAS  Google Scholar 

  • Amtmann A, Bohnert HJ, Bressan RA (2005) Abiotic stress and plant genome evolution. Search for new models. Plant Physiol 138:127–130

    Article  CAS  PubMed  Google Scholar 

  • Anonymous (2004) FAO production yearbook. FAO, Rome

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol 55:373–379

    Article  CAS  PubMed  Google Scholar 

  • Apelbaum A, Goldlust A, Isekson I (1985) Control by ethylene of arginine decarboxylase activity in pea seedlings and its implication for hormone regulation of plant growth. Plant Physiol 79:635–647

    Article  CAS  PubMed  Google Scholar 

  • Aronova EE, Shevyakova NI, Sretsenko LA, Kuznetsov VlV (2005) Cadaverine-induced induction of superoxide dismutase gene expression in Mesembryanthemum crystallinum L. Doklady Biol Sci 403:1–3

    Article  Google Scholar 

  • Bagga S, Rochford J, Klaene Z, Kuehn CD, Phillips GC (1997) Putrescine iminopropyltransferase is responsible for biosynthesis of spermidine, spermine and multiple uncommon polyamines in osmotic stress-tolerant alfalfa. Plant Physiol 114:445–454

    CAS  PubMed  Google Scholar 

  • Bagni N, Tassoni A (2001) Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids 20:301–317

    Article  CAS  PubMed  Google Scholar 

  • Bartels D, Souer E (2004) Molecular responses of higher plants to dehydration. In: Hirt H, Shinozaki K (eds) Plant responses to abiotic stress, vol 4. Topics in current genetics. Springer, Berlin, pp 9–38

    Google Scholar 

  • Bastola DR, Minocha SC (1995) Increased putrescine biosynthesis through transfer on mouse ornithine decarboxylase cDNA in carrot promotes somatic embryogenesis. Plant Physiol 109:63–71

    CAS  PubMed  Google Scholar 

  • Bhatnagar P, Glasheen BM, Bains SK, Long SL, Minocha R, Walter C, Minocha SC (2001) Transgenic manipulation of the metabolism of polyamines in poplar cells. Plant Physiol 125:2139–2153

    Article  CAS  PubMed  Google Scholar 

  • Borrel A, Culianez-Macia A, Atabella T, Besford RT, Flores D, Tiburcio AF (1995) Arginine decarboxylase is localized in chloroplasts. Plant Physiol 109:771–776

    Google Scholar 

  • Borrel A, Besford RT, Atabella T, Masgrau C, Tiburcio AF (1996) Regulation of arginine decarboxylase by spermine in osmotically stressed oat leaves. Plant Physiol 98:105–110

    Article  Google Scholar 

  • Bors W, Langebartels C, Michel C, Sandermann H (1989) Polyamines as radical scavengers and protectants against ozone damage. Phytochemistry 28:1589–1595

    Article  CAS  Google Scholar 

  • Bortolotti C, Cordeiro A, Alcázar R, Borrell A, Culiañez-Macià FA, Tiburcio AF, Atabella T (2004) Localization of arginine decarboxylase in tobacco plants. Physiol Plant 120:84–92

    Article  CAS  PubMed  Google Scholar 

  • Bouchereau A, Aziz LF, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125

    Article  CAS  Google Scholar 

  • Bryson K, Greenall RJ (2000) Binding sites of the polyamines putrescine, cadaverine, spermidine and spermine on A- and B-DNA located by stimulated annealing. J Biomol Struct Dyn 18:393–412

    CAS  PubMed  Google Scholar 

  • Bueb L, Da Silva A, Mousli M, Landry Y (1992) Natural polyamines stimulate G-proteins. Biochem J 282:545–550

    CAS  PubMed  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA 101:9909–9914

    Article  CAS  PubMed  Google Scholar 

  • Carden DE, Walker DJ, Flowers TJ, Miller AJ (2003) Single-cell measurements of the contributions of cytosolic NA+ and K+ to salt tolerance. Plant Physiol 131:676–683

    Article  CAS  PubMed  Google Scholar 

  • Cervelli M, Caro O, Penta A, Angelini R, Federico R, Vitale A, Mariottini P (2004) A novel C-terminal sequence from barley polyamine oxidase is a vacuolar sorting signal. Plant J 40:410–418

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay MK, Gupta S, Sengupta DH, Ghosh B (1997) Expression of arginine decarboxylase in seedlings by salinity stress. Plant Mol Biol 34:477–483

    Article  CAS  PubMed  Google Scholar 

  • Chen TH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S (2005) Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environ 28:1230–1246

    Article  CAS  Google Scholar 

  • Childs AC, Mehta DJ, Gerner EW (2004) Polyamine-dependent gene expression. Cell Mol Life Sci 60:1394–1406

    Article  CAS  Google Scholar 

  • Christmann A, Hoffmann T, Teplova I, Grill E, Müller A (2005) Generation of active pools of abscisic acid revealed by in vivo imaging of water stressed Arabidopsis. Plant Physiol 137:209–219

    Article  CAS  PubMed  Google Scholar 

  • Cona A, Cenci F, Cervelli M, Federico R, Mariottini P, Moreno S, Angelini R (2003) Polyamine oxidase, a hydrogen peroxide-producing enzyme, is up-regulated by light and down-regulated by auxin in the outer tissues of the maize mesocotyl. Plant Physiol 131:803–813

    Article  CAS  PubMed  Google Scholar 

  • Cona A, Rea G, Angelini R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11:80–88

    Article  CAS  PubMed  Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    Article  CAS  PubMed  Google Scholar 

  • Dajic Z (2006) Salt stress. In: Madhava Rao KV, Raghavendra AS, Junardhan Reddy K (eds) Physiology and molecular biology of stress tolerance in plants. Springer, The Netherlands, pp 270–296

    Google Scholar 

  • D'Agostino L, Massimiliano DP, Luccia AD (2005) Nuclear aggregates of polyamines are supramolecular structures that play a crucial role in genomic DNA protection and conformation. FEBS J 272:3777–3787

    Article  PubMed  CAS  Google Scholar 

  • Di Tomasso JM, Hart JJ, Kochian LV (1992) Transport kinetics and metabolism of exogenously applied putrescine in roots of intact maize seedlings. Plant Physiol 98:611–620

    Article  Google Scholar 

  • Deng H, Bloomfield VA, Benevides JM (2000) Structural basis of polyamine-DNA recognition: spermidine and spermine interactions with genomic B-DNAs of different GC content probed by Raman spectroscopy. Nucleic Acids Res 28:3379–3385

    Article  CAS  PubMed  Google Scholar 

  • Dobrovinskaya OR, Muniz J, Pottosin ІІ (1999) Inhibition of vacuolar ion channels by polyamines. J Membr Biol 162:127–140

    Article  Google Scholar 

  • Dondini L, del Duca S, Doll'Agata L, Bassu R, Gastaldeli M, Della Mea M, di Sandro A, Claparols I, Serafini-Fracassini D (2003) Suborganellar localisation and effect of light on Heliantus tuberosus chloroplast transglutaminases and their substrates. Planta 217:84–95

    CAS  PubMed  Google Scholar 

  • Drolet G, Dumbroff EB, Leggee RL, Thompson JE (1986) Radical scavenging properties of polyamines. Phytochemistry 25:367–371

    Article  CAS  Google Scholar 

  • Duhazé C, Gouzerh G, Gagneul D, Larher F, Bouchereau A (2002) The conversion of spermidine to putrescine and 1,3-diaminopropane in the roots of Limonium tataricum. Plant Sci 163:639–646

    Article  Google Scholar 

  • Erdei E, Lee SJ, Wei Q, Wang LE, Song YS, Bovbjerg D, Berwick M (2005) Reliability of mutagen sensitivity assay: an inter-laboratory comparison. Mutagenesis 21:261–264

    Article  Google Scholar 

  • Edreva AM, Velikova VB, Tsonov TD (2007) Phenylamides in plants. Russ J Plant Physiol 54:289–302

    Article  CAS  Google Scholar 

  • Espartero J, Pintor-Toro JA, Pardo JN (1994) Differential accumulation of S-adenosylmethionine synthase transcripts in response to salt stress. Plant Mol Biol 25:217–227

    Article  CAS  PubMed  Google Scholar 

  • Evans PT, Malmberg RL (1989) Do polyamines have roles in plant development? Annu Rev Plant Physiol Plant Mol Biol 40:235–269

    CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Friedman R, Altman A, Levin N (1986) Presence and identification of polyamine in xylem and phloem exudates of plants. Plant Physiol 82:1154–1157

    Article  CAS  PubMed  Google Scholar 

  • Fritze K, Czaja I, Walden R (1995) T-DNA tagging of genes influencing polyamine metabolism - isolation of mutant plant lines and rescue of DNA promoting growth in the presence of polyamine biosynthetic inhibitor. Plant J 7:261–271

    Article  CAS  Google Scholar 

  • Fujihara S, Yoneyama T (1993) Effects of pH and osmotic stress on cellular polyamine contents in the soybean rhizobia Rhizobium fredii P220 and Bradyrhizobium japonicum A1017. Appl Environ Microbiol 59:1104–1109

    CAS  PubMed  Google Scholar 

  • Galloway GL, Malmberg RL, Price RA (1998) Phylogenetic utility of the nuclear gene arginine decarboxylase: an example from Brassicaceae. Mol Biol Evol 15:1312–1320

    CAS  PubMed  Google Scholar 

  • Galston AW, Kaur-Sawhney R, Atabella T, Tiburcio AF (1997) Plant polyamines in reproductive activity and response to abiotic stress. Bot Acta 110:197–207

    CAS  Google Scholar 

  • Gerats AGM, Kaye C, Collins C, Malmberg RL (1988) Polyamine level in Petunia genotypes with normal and abnormal floral morphologies. Plant Physiol 86:390–393

    Article  CAS  PubMed  Google Scholar 

  • Gong Q, Li P, Ma S, Rupassara SI, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 41:1–14

    Google Scholar 

  • Ha HL, Sirisoma NS, Kuppusamy P, Zweller JL, Woster PM, Casero RA (1998) The natural polyamine spermine functions as a free radical scavenger. Proc Natl Acad Sci USA 95:11140–11145

    Article  CAS  PubMed  Google Scholar 

  • Halmekytö M, Alhonen L, Alakuijala L, Jänne J (1993) Transgenic mice over-producing putrescine in their tissues do not convert the diamine into higher polyamines. Biochem J 291:505–508

    PubMed  Google Scholar 

  • Hanfrey C, Sommer S, Mayer MJ, Burtin D, Michael AJ (2001) Arabidopsis polyamine biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity. Plant J 27:551–560

    Article  CAS  PubMed  Google Scholar 

  • Hanzawa Y, Takahashi T, Michael AJ, Burtin D, Long D, Pineiro M, Coupland G, Komeda Y (2000) ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO J 19:4248–4256

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Mol Biol 51:463–497

    Article  CAS  Google Scholar 

  • Havelange A, Lejeune P, Bernier A, Kaur-Sawhney R, Galston AW (1996) Putrescine export from leaves in relation to floral transition in Sinapis alba. Physiol Plant 96:59–65

    Article  CAS  Google Scholar 

  • Herminghaus S, Schreirer PH, McCarthy JEG, Landsmann J, Botterma J, Berlin J (1991) Expression of bacterial lysine decarboxylase gene and transport of the protein into chloroplasts of transgenic tobacco. Plant Mol Biol 17:475–486

    Article  CAS  PubMed  Google Scholar 

  • Hiatt AC, Malmberg RL (1988) Utilization of putrescine in tobacco cell lines resistant to inhibitors of polyamine synthesis. Plant Physiol 86:441–446

    Article  CAS  PubMed  Google Scholar 

  • Imai A, Akiyama T, Kato T, Sato S, Tabata S, Yamamoto KT, Takahashi T (2004a) Spermine is not essential for survival of Arabidopsis. FEBS Lett 556:148–152

    Article  CAS  PubMed  Google Scholar 

  • Imai A, Matsuyama T, Hanzawa Y, Akiyama T, Tamaoki M, Saji H, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Komeda Y, Takahashi T (2004b) Spermidine synthase genes are essential for survival of Arabidopsis. Plant Physiol 135:1565–1573

    Article  CAS  PubMed  Google Scholar 

  • Inan G, Zhang Q, Li P, Wang Z, Cao Z., Zhang H, Zhang C, Quist TM, Goodwin SM, Zhu J, Shi H, Damsz B, Charbaji T, Gong Q, Ma S, Fredricksen M, Galbraith DW, Jenks MA, Rhodes D, Hasegawa PM, Bohnert HJ, Joly RJ, Bressan RA, Zhu JK (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analysis of growth and development of extremophiles. Plant Physiol 135:1718–1737

    Article  CAS  PubMed  Google Scholar 

  • Kakkar RK, Sawhney VK (2002) Polyamine research in plants - a changing perspective. Physiol Plant 116:281–292

    Article  CAS  Google Scholar 

  • Kant S, Kant P, Raven E, Barak S (2006) Evidence that differential gene expression between the halophyte, Thellungiella halophyla, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophyla. Plant Cell Environ 29:1220–1234

    Article  CAS  PubMed  Google Scholar 

  • Kasinathan V, Wingler A (2004) Effect of reduced arginine decarboxylase activity on salt tolerance and on polyamine formation during salt stress in Arabidopsis thaliana. Physiol Plant 121:101–107

    Article  CAS  PubMed  Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722

    Article  CAS  PubMed  Google Scholar 

  • Kasukabe Y, He L, Watakabe Y, Otani M, Shimada T, Tachibana S (2006) Improvement of environment stress tolerance of sweet potato by introduction of genes for spermidine synthase. Plant Biotechnol 23:75–83

    CAS  Google Scholar 

  • Kaur-Sawhney R, Tiburcio AF, Atabella T, Galston AW (2003) Polyamines in plants: an overview. J Cell Mol Biol 2:1–12

    Google Scholar 

  • Kim TE, Kim S-K, Han TJ, Lee JS, Chang SC (2002) ABA and polyamines act independently in primary leaves of cold-stressed tomato (Licopersicon esculentum). Physiol Plant 115:370–376

    Article  CAS  PubMed  Google Scholar 

  • Koenig H, Goldstone A, Lu CY (1983) Polyamines regulate calcium fluxes in a rapid plasma membrane occurrence. Nature 305:530–534

    Article  CAS  PubMed  Google Scholar 

  • Koiwai H, Nakaminami K, Seo M, Mitsuhasi W, Toyomasu T, Koshiba T (2004) Tissue-specific localization of an abscisic acid biosynthesis enzyme, AAO#, in Arabidopsis. Plant Physiol 134:1697–1707

    Article  CAS  PubMed  Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy R, Bhagwat KA (1989) Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiol 91:500–504

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Minocha SC (1998) Transgenic manipulation of polyamine metabolism. In: Lindsey K (ed) Transgenic research in plants. Harwood, London, pp 189–199

    Google Scholar 

  • Kutuzov MA, Andreeva AV, Voyno-Yasennetskaya TA (2005) Regulation of apoptosis signal-regulating kinase 1 (ASK1) by polyamine levels via protein phosphatase 5. J Biol Chem 280:25388–25395

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsov VlV, Rakitin VYu, Sadomov NG, Dam DV, Stetsenko LA, Shevyakova NI (2002) Do polyamines participate in the long-distance translocation of stress signals in plants? Russ J Plant Physiol 49:136–147

    Google Scholar 

  • Kuznetsov VlV, Radyukina NL, Shevyakova NI (2006a) Polyamine and stress: biological role, metabolism, and regulation. Russ J Plant Physiol 53:583–604

    Article  CAS  Google Scholar 

  • Kuznetsov VlV, Rakitin VYu, Radyukina NL, Ivanov Vyu, Kartashov AV, Shevyakova NI (2006b) Stress-accelerated spermine production in leaves of Thellungiella halophyla is not controlled at level of expression of SPDS gene. Abstract P08002 in American Society of Plant Biologists; http://abstracts.aspb.org/pb2006/public/P08/P08002.html

  • Kuznetsov VlV, Shorina M, Aronova E, Stetsenko L, Rakitin V, Shevyakova N (2007) NaCl- and ethylene-dependent cadaverine accumulation and its possible protective role in the adaptation of the common ice plant to salt stress. Plant Sci 172:363–370

    Article  CAS  Google Scholar 

  • Kuznetsov VlV, Stetsenko LA, Shevyakova NI (2009) Exogenous cadaverine induces oxidative burst and reduces cadaverine conjugate content in the common ice plant. J Plant Physiol 166:40–51

    Article  CAS  PubMed  Google Scholar 

  • Langebartels C, Kerner KJ, Leonardi S, Schraudner M, Trost M, Heiller W, Sanderman H (1991) Biochemical plant response to ozone. Differential induction of polyamine and ethylene biosynthesis in tobacco. Plant Physiol 9:882–887

    Article  Google Scholar 

  • Legocka J, Zaichert J (1999) Role of spermidine in the stabilization of apoprotein of the light-harvesting chlorophyll a/b-protein complex of photosystem 11 during leaf senescence process. Acta Physiol Plant 21:127–137

    Article  CAS  Google Scholar 

  • Lepri O, Bassie L, Safwat G, Thu-Hang P, Trung-Nghia P, Hölttä E, Christou P, Capell T (2001) Over-expression of human ornithine decarboxylase cDNA in transgenic rice plants alters the polyamine pool in a tissue-specific manner. Mol Gen Genet 266:303–312

    CAS  Google Scholar 

  • Lindemose S, Nielson PE, Møllegaard NE (2005) Polyamines preferentially interact with bent adenine tracts in double-stranded DNA. Nucleic Acids Res 33:1790–1803

    Article  CAS  PubMed  Google Scholar 

  • Liu J-H, Moriguchi T (2006) ADC pathway plays an important in salt stress response of apple in vitro callus. Plant Genomic Chin 124:1315–1325

    Google Scholar 

  • Maiale S, Sanchez DH, Guirado A, Vidal A, Ruiz OA (2004) Spermine accumulation under salt stress. J Plant Physiol 161:35–42

    Article  CAS  PubMed  Google Scholar 

  • Martin-Tanguy J (2001) Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul 34:135–148

    Article  CAS  Google Scholar 

  • Masgrau C, Altabella T, Farras R, Flores D, Thompson AJ, Besford RT, Tiburcio AF (1997) Inducible overexpression of oat arginine decarboxylase in transgenic tobacco plants. Plant J 11:465–473

    Article  CAS  PubMed  Google Scholar 

  • Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality and vine life. Nat Biotechnol 20:613–618

    Article  CAS  PubMed  Google Scholar 

  • Messiaen J, van Cutsem P (1999) Polyamines and pectins. ІІ Modulation of pectic-signal transduction. Planta 208:247–250

    Article  CAS  PubMed  Google Scholar 

  • Moschou PN, Dellis I, Paschalidis K, Robelakis-Angelakis KA (2008a) Transgenic tobacco plants over-expressing polyamine oxidase are not able to cope with oxidative burst generated by abiotic factors. Physiol Plant 133:140–156

    Article  CAS  PubMed  Google Scholar 

  • Moschou PN, Sanmartin M, Andriopoulou AH, Rojo E, Sanchez-Serrano LJ, Roubelakis-Angelakis KA (2008b) Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis. Plant Physiol 147:1845–1857

    Article  CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395

    Article  CAS  PubMed  Google Scholar 

  • Ormrod DP, Beckerson DW (1986) Polyamines as antiozonats for tomato. Hortic Sci 21:1070–1071

    CAS  Google Scholar 

  • Panicot M, Minguet EG, Ferrando A, Alcázar R, Blázquez MA, Carbonell J, Atabella T, Koncz C, Tiburcio AF (2002) A polyamine metabolon involving aminopropyl transferase complexes in Arabidopsis. Plant Cell 14:2539–2551

    Article  CAS  PubMed  Google Scholar 

  • Paramonova NV, Shevyakova NI, Shorina MV, Stetsenko LA, Rakitin VYu (2003) The effect of putrescine on the apoplast ultrastructure in the leaf mesophyll of Mesembryanthemum crystallinum under salinity stress. Russ J Plant Physiol 50:661–674

    Article  Google Scholar 

  • Paramonova NV, Shevyakova NI, Kuznetsov VlV (2007) Ultrastructural of ferritin in the leaves of Mesembryanthemum crystallinum under stress conditions. Russ J Plant Physiol 54:244–256

    Article  CAS  Google Scholar 

  • Paschalidis KA, Roubelakis-Angelakis KA (2005a) Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs/tissues of tobacco plants. Correlations with age, cell division/expansion, and differentiation. Plant Physiol 138:142–152

    Article  CAS  PubMed  Google Scholar 

  • Paschalidis KA, Roubelakis-Angelakis KA (2005b) Sites and regulation of polyamine catabolism in the tobacco plant. Correlations with cell division/expansion, cell cycle progression, and vascular development. Plant Physiol 138:2174–2184

    Article  CAS  PubMed  Google Scholar 

  • Perez-Amador MA, Leon J, Green PJ, Carbonell J (2002) Induction of the arginine decarboxylase ADC2 gene provides evidence for the involvement of polyamines in the wound response in Arabidopsis. Plant Physiol 130:1454–1463

    Article  CAS  PubMed  Google Scholar 

  • Radyukina NL, Ivanov YuV, Kartashov AV, Shevyakova NI, Rakitin VYu, Khryanin VN, Kuznetsov VlV (2007a) Inducible and constitutive mechanisms of salt stress resistance in Geum urbanum L. Russ J Plant Physiol 54:692–698

    Google Scholar 

  • Radyukina NL, Kartashov AV, Ivanov YuV, Shevyakova NI and Kuznetsov VlV (2007b) Functioning of defence systems in halophytes and glycophytes under progressing salinity. Russ J Plant Physiol 54:806–815

    Article  CAS  Google Scholar 

  • Rakitin VYu, Prudnikova ON, Rakitina TYa, Vlasov PV, Karyagin VV (2004) UV-B induced evolution, accumulation of ABA and putrescine in Arabidopsis thaliana plants. Abstract Botanikertagung, Braunschweig, 5–10 September, Proc Dtsch Bot Ges Verein Angew Bot pp 420

    Google Scholar 

  • Rakova NU, Romanov GA (2005) Polyamines suppress manifestation cytokinine primary effects. Russ J Plant Physiol 52:50–57

    Article  CAS  Google Scholar 

  • Ramos J, Lopez MJ, Benlloch M (2004) Effect of NaCl and KCl salts on the growth and solute accumulation of the halophyte Atriplex nummularia. Plant Soil 259:163–168

    Article  CAS  Google Scholar 

  • Rea G, de Concetta PM, Tavazza R, Biondi S, Gobbi V, Ferrante P, De Gara L, Federico R, Angelini R, Tavladoraki P (2004) Ectopic expression of maize polyamine oxidase and pea copper amine oxidase in the cell wall of tobacco plants. Plant Physiol 134:1414–1426

    Article  CAS  PubMed  Google Scholar 

  • Richard FJ, Coleman RG (1952) Occurrence of putrescine in potassium-deficient barley. Nature 170:460

    Article  Google Scholar 

  • Rowland-Bamford AJ, Barland AM, Lea PJ, Mansfield TA (1989) The role of arginine decarboxylase in moduling the sensitivity of barley to ozone. Environ Pollut 61:93–99

    Google Scholar 

  • Roy M, Wu R (2002) Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride stress tolerance. Plant Sci 163:987–992

    Article  CAS  Google Scholar 

  • Ruiz-Herrera J, Ruiz-Medrano R, Dominguez A (1995) Selective inhibition of cytosine-DNA methylases by polyamines. FEBS Lett 357:192–196

    Article  CAS  PubMed  Google Scholar 

  • Sairam RK, Tyagi A, Chinnusamy V (2006) Salinity tolerance: cellular mechanisms and gene regulation. In: Huang B (ed) Plant-environment interactions. Taylor and Francis, New York, pp 121–309

    Google Scholar 

  • Sauter A, Dietz K-J, Hartung W (2002) A possible physiological role of abscisic acid conjugates in root-to-shoot signalling. Plant Cell Environ 25:223–22

    Article  CAS  PubMed  Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12

    CAS  PubMed  Google Scholar 

  • Seki M, Narusaka M, Ishida J (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Cuin TA, Pottosin I (2007) Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking non-selective cation channels. FEBS Lett 581:1993–1999

    Article  CAS  PubMed  Google Scholar 

  • Shen W, Nada K, Tachibana S (2000) Involvement of polyamines in the chilling tolerance of cucumber cultivars. Plant Physiol 124:431–439

    Article  CAS  PubMed  Google Scholar 

  • Shevyakova NI, Kir'yan IG (1995) Osobennosti regulyatsii biosinteza metionina v soleustoichivykh kletkakh Nicotiana sylvestris L. Fiziol Rast 42:94–99

    Google Scholar 

  • Shevyakova NI, Rakitin VYu, Duong DB, Sadomov NG, Kuznetsov VLV (2001) Heat shock-induced cadaverine accumulation and translocation throughout the plant. Plant Sci 161:1125–1133

    Article  CAS  Google Scholar 

  • Shevyakova NI, Shorina MV, Rakitin VYu, Stetsenko LA, Kuznetsov VlV (2004) Ethylene-induced production of cadaverine is mediated by protein phosphorylation and dephosphorylation. Dokl Biol Sci 395:283–285

    Article  Google Scholar 

  • Shevyakova NI, Rakitin VYu, Stetsenko LA, Aronova EE, Kuznetsov VlV (2006a) Oxidative stress and fluctuations of free and conjugated polyamines in the halophyte Mesembryanthemum crystallinum L. under NaCl salinity. Plant Growth Regul 50:69–78

    Article  CAS  Google Scholar 

  • Shevyakova NI, Shorina MV, Rakitin VYU, Kuznetsov VLV (2006b) Stress-dependent accumulation of spermidine and spermine in the halophyte Mesembryanthemum crystallinum L. under salinity conditions. Russ J Plant Physiol 53:739–745

    Article  CAS  Google Scholar 

  • Shorina MV, Ragulin VV, Kuznetsov VlV, Shevyakova NI (2005) Does cadaverine and ethylene involved in CAM-type photosynthesis induction in the common ice plant? Dokl Biol Sci 400:115–120

    Article  Google Scholar 

  • Åšlesak J, Karpinska B, Surówka E, Miszalski Z, Karpinski S (2003) Redox changes in the chloroplast and hydrogen peroxide are essential for regulation of C3-CAM transition and photooxidative stress responses in the facultative CAM plant Mesembryanthemum crystallinum L. Plant Cell Physiol 44:573–581

    Article  PubMed  Google Scholar 

  • Takahashi Y, Uehara Y, Berberich T, Ito A, Saitoh H, Miyazaki A (2004) A subset of hypersensitive response marker genes, including HSR203J, is the downstream target of a spermine signal transduction pathway in tobacco. Plant J40:586–595

    Google Scholar 

  • Taji T, Motoaki S, Masakazu S, Tetsuya S, Masatomoto K, Ishiyama K, Narusaka Y, Narusaka M, Zhu J-K, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt stress using Arabidopsis microarray. Plant Physiol 135:1697–1709

    Article  CAS  PubMed  Google Scholar 

  • Tassoni A, Antognoni F, Battistini ML, Sanvido OA, Bagni N (1998) Characterization of spermidine binding to solubilized plasma membrane proteins from Zucchini hypocotyls. Plant Physiol 117:971–977

    Article  CAS  PubMed  Google Scholar 

  • Tavladoraki P, Rossi MN, Saccuti G, Perez-Amador MA (2006) Heterologous expression and biochemical characterization of a polyamine oxidase from Arabidopsis involved in polyamine back conversion. Plant Physiol 149:15–1532

    Google Scholar 

  • Tiburcio AF, Besford RT, Capell T, Borell A, Testillano PS, Risueûo MC (1994) Mechanisms of polyamines action during senescence responses induced by osmotic stress. J Exp Bot 45:1789–1800

    Article  CAS  Google Scholar 

  • Tkachenko AG, Nesterova LY (2003) Polyamines as modulators of gene expression under oxidative stress in Escherichia coli. Biochemistry 68:850–856

    CAS  PubMed  Google Scholar 

  • Turano FJ, Kramer GF (1993) Effect of metabolic intermediates on the accumulation of polyamines in detached soybean leaves. Phytochemistry 34:959–968

    Article  CAS  Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Igarashi Y, Seki M, Sekiguchi F, Yamaguchi-Shinozaki K, Shinozaki K (2003) Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant Cell Environ 26:1917–1926

    Article  CAS  Google Scholar 

  • Vera-Estrella R, Barkla BJ, García-Ramírez L, Pantoja O (2005) Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance. Plant Physiol 139:1507–1517

    Article  CAS  PubMed  Google Scholar 

  • Volkov V, Wang B, Dominy PJ, Fricke W, Amtman A (2004) Thellungiella halophyla, a salt-tolerant relative of Arabidopsis thaliana, between potassium and sodium. Plant Cell Environ 27:1–14

    Article  CAS  Google Scholar 

  • Von Detsch AW, Mitchell CD, Williams CE, Dutt K, Silvestrov NA, Klement BJ, Abukhalaf JK, van Dentsch DA (2005) Polyamines protect against radiation-induced oxidative stress. Gravit Space Biol Bull 18:109–110

    Google Scholar 

  • Vranova E, Atichartpongkus S, Villarroll R, Van Montagu M, Inzé D, Van Camp W (2002) Comprehensive analysis of gene expression in Nicotiana tabacum leaves acclimated to oxidative stress. Proc Natl Acad Sci USA 99:10870–10875

    Article  CAS  PubMed  Google Scholar 

  • Walden R, Cordeiro A, Tiburcio F (1997) Polyamines: small molecules triggering pathways in plant growth and development. Plant Physiol 113:1009–1013

    Article  CAS  PubMed  Google Scholar 

  • Wang KL-C, Li H, Ecker JR (2002a) Ethylene biosynthesis and signaling networks. Plant Cell S131–S151

    Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Devereux W, Stewart TM, Casero RA (2002b) Polyamine-modulated factor 1 binds to the human homologue of the 7a subunit of the Arabidopsis COP9 signalosome: implications in gene expression. Biochem J 366:79–86

    Article  CAS  PubMed  Google Scholar 

  • Wi SJ, Park KY (2002) Antisense expression of carnation cDNA encoding ACC synthase or ACC oxidase enhances polyamine content and abiotic stress tolerance in transgenic tobacco plants. Transgenic Res Newslett 13:209–220

    CAS  Google Scholar 

  • Yang J, Zhang J, Liu K, Wang Z, Liu L (2007) Involvement of polyamines in the drought resistance of rice. J Exp Bot 58:1545–1555

    Article  CAS  PubMed  Google Scholar 

  • Ye B, Müller H, Zhang J, Cressel J (1997) Constitutively elevated level of putrescine and putrescine-generation enzymes, correlated with oxidant stress resistance in Coniza bonariensis and wheat. Plant Physiol 115:1443–1451

    Article  CAS  PubMed  Google Scholar 

  • Yeo AR, Flowers TJ (1986) Ion transport in Suaeda maritima: its relation to growth and implications for the pathway of radial transport of ions across the root. J Exp Bot 37:143–159

    Article  Google Scholar 

  • Zhao F, Chun-Peng S, He J, Zhu H (2007) Polyamines improve K+/N+ homeostasis in barley seedling by regulating root ion channel activities. Plant Physiol 145:1061–1072

    Article  CAS  PubMed  Google Scholar 

  • Zhao FG, Qin P (2004) Protective effects of exogenous polyamines on root tonoplast function against salt stress in barley seedlings. Plant Growth Regul 42:97–103

    Article  CAS  Google Scholar 

  • Zhu J-K (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Ding GH, Fang K, Zhao FG, Qin P (2006) New perspective on the mechanism of alleviating salt stress by spermidine in barley seedlings. Plant Growth Regul 49:147–156

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Nella L. Klachko from the Institute of Plant Physiology (Moscow, Russia) for valuable discussion. This work was partially supported by the Russian Foundation for Basic Research and by the program of the Presidium of RAS (Cell and Molecular Biology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Kuznetsov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuznetsov, V.V., Shevyakova, N.I. (2010). Polyamines and Plant Adaptation to Saline Environments. In: Ramawat, K. (eds) Desert Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02550-1_13

Download citation

Publish with us

Policies and ethics