Skip to main content

Neural Classifiers

  • Chapter
  • First Online:
Neural Networks and Micromechanics

Abstract

In this chapter we shall describe the neural classifiers. One of the important tasks in micromechanics for process automation is pattern recognition. For this purpose we developed different neural classifiers. Below, we will describe the Random Threshold Classifier (RTC classifier), Random Subspace Classifier (RSC classifier), and LIRA classifier (LImited Receptive Area). We will describe the structure and functions of these classifiers and how we use them. The first problem is the texture recognition problem. The task of classification in recognition systems is a more important issue than clustering or unsupervised segmentation in a vast majority of applications [1]. Texture classification plays an important role in outdoor scene images recognition, surface visual inspection systems, and so on. Despite its potential importance, there is no formal definition of texture due to an infinite diversity of texture samples. There exists a large number of texture analysis methods in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castano R., Manduchi R., Fox J., Classification experiments on real-world texture, Proceedings of the Third Workshop on Empirical Evaluation Methods in Computer Vision, Kauai, Hawaii, 2001, pp. 3–20.

    Google Scholar 

  2. Matti Pietikäinen, Tomi Nurmela, Topi Mäenpää, Markus Turtinen, View-based recognition of real-world textures, Pattern Recognition, Vol.37, 2004, pp. 313–323.

    Article  MATH  Google Scholar 

  3. Baidyk T., Comparison of texture recognition with potential functions and neural networks, Neural Networks and Neurocomputers, 1991, pp. 52–61 (in Russian).

    Google Scholar 

  4. Kussul E., Rachkovskij D., Baidyk T., On image texture recognition by associative-projective neurocomputer, Proceedings of the International Conference on Intelligent Engineering Systems through Artificial Neural Networks, 1991, pp. 453–458.

    Google Scholar 

  5. Goltsev A., An assembly neural network for texture segmentation, Neural Networks, Vol. 9, No. 4, 1996, pp. 643–653.

    Article  Google Scholar 

  6. Goltsev A., Wunsch D., Inhibitory connections in the assembly neural network for texture segmentation, Neural Networks, Vol. 11, 1998, pp. 951–962.

    Article  Google Scholar 

  7. Chi-ho Chan, Grantham K.H. Pang, Fabric defect detection by Fourier analysis, IEEE Transactions on Industry Applications, Vol. 36/5, 2000, pp. 1267–1276.

    Article  Google Scholar 

  8. Zschech E., Besser P.. Microstructure characterization of metal interconnects and barrier layers: status and future. Proc. of the IEEE International Interconnect Technology Conference, 2000, pp. 233–235.

    Google Scholar 

  9. Hepplewhite L., Stonham T.J., Surface inspection using texture recognition, Proc. of the 12th IAPR International Conference on Pattern Recognition, Vol. 1, 1994, pp. 589–591.

    Google Scholar 

  10. Patel D., Hannah I., Davies E.R., Foreign object detection via texture analysis, Proc. of the 12th IAPR International Conference on Pattern Recognition, 1994, Vol. 1, pp. 586–588.

    Google Scholar 

  11. Hoogs A., Collins R., Kaicic R., Mundy J., A common set of perceptual observables for grouping, figure-ground discrimination, and texture classification, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25/4, 2003, pp. 458–474.

    Article  Google Scholar 

  12. Leung T., Malik J., Representing and recognizing the visual appearance of materials using three-dimensional textons, Int. J. Comput. Vision, Vol. 43 (1), 2001, pp. 29–44.

    Article  MATH  Google Scholar 

  13. Dana K.J., B. van Ginneken, Nayar S.K., Koendrink J.J., Reflectance and texture of real world surfaces, ACM Trans. Graphics, Vol. 18 (1), 1999, pp. 1–34.

    Article  Google Scholar 

  14. http://ww1.cs.columbia.edu/CAVE/curet/

  15. Patel D., Stonham T.J., A single layer neural network for texture discrimination, IEEE International Symposium on Circuits and Systems, Vol. 5, 1991, pp. 2656–2660.

    Google Scholar 

  16. Mayorga M.A., Ludeman L.C., Shift and rotation invariant texture recognition with neural nets, Proc. of the IEEE International Conference on Neural Networks, Vol. 6, 1994, pp. 4078–4083.

    Google Scholar 

  17. Woobeom Lee, Wookhyun Kim, Self-organization neural networks for multiple texture image segmentation, Proc. of the IEEE Region 10 Conference TENCON 99, Vol. 1, 1999, pp. 730–733.

    Google Scholar 

  18. Brodatz P., Texture: A Photographic Album for Artists and Designers, Dover Publications, New York, 1966.

    Google Scholar 

  19. Kussul E., Baidyk T., Lukovitch V., Rachkovskij D., Adaptive high performance classifier based on random threshold neurons, Proc. of Twelfth European Meeting on Cybernetics and Systems Research (EMCSR-94), Austria, Vienna, 1994, pp. 1687–1695.

    Google Scholar 

  20. Kussul E., Baidyk T., Kasatkina L., Lukovich V., Rosenblatt Perceptrons for Handwritten Digit Recognition, Proceedings of International Joint Conference on Neural Networks IJCNN, 2001, Vol. 2, 2001, pp. 1516–1520.

    Google Scholar 

  21. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., “Gradient-based Learning Applied to Document Recognition”, Proceedings of the IEEE, Vol. 86, No. 11, November 1998, pp. 2278–2344.

    Article  Google Scholar 

  22. Hoque M.S., Fairhurst M.C. “A Moving Window Classifier for Off-line Character Recognition”. Proceedings of the 7th International Workshop on Frontiers in Handwriting Recognition, 2000, Amsterdam, pp. 595–600.

    Google Scholar 

  23. S. Belongie, J. Malik, J. Puzicha,  Matching shapes, Proceedings of the 8-th IEEE Intern. Conf. on Computer Vision ICCV, Vol. 1, 2001, pp. 454–461.

    Google Scholar 

  24. S. Belongie, J. Malik, J. Puzicha, Shape matching and object recognition using shape contexts, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 4, 2002, pp. 509–522.

    Article  Google Scholar 

  25. L.Bottou, C. Cortes, J. Denker, H. Drucker, L. Guyon, L. Jackel, Y. LeCun, U. Muller, E. Sackinger, P. Simard, V. Vapnik, Comparison of classifier methods: a case study in handwritten digit recognition, Proceedings of 12th IAPR Intern. Conf. on Pattern Recognition, 1994, Vol. 2, pp. 77–82.

    Google Scholar 

  26. E. Kussul, T. Baidyk, Improved method of handwritten digit recognition tested on MNIST database, Proceedings of the 15th Intern. Conf. on Vision Interface, Calgary, Canada, 2002, pp. 192–197.

    Google Scholar 

  27. Baidyk T., Kussul E., Makeyev O., Caballero A., Ruiz L., Carrera G., Velasco G. Flat image recognition in the process of microdevice assembly, Pattern Recognition Letters. Vol. 25/1, 2004, pp. 107–118.

    Article  Google Scholar 

  28. Kussul E., Baidyk T., Wunsch D., Makeyev O., Martín A. Permutation coding technique for image recognition systems. IEEE Transactions on Neural Networks, Vol. 17/6, November 2006, pp. 1566–1579.

    Article  Google Scholar 

  29. Cheng-Lin Liu, K. Nakashima, H. Sako, H. Fujisawa, Handwritten digit recognition using state-of-the-art techniques, Proceedings of the 8th Intern. Workshop on Frontiers in Handwritten Recognition, Ontario, Canada, August 2002, pp. 320–325.

    Google Scholar 

  30. Rosenblatt, F., Principles of Neurodynamics, Spartan books, New York, 1962.

    MATH  Google Scholar 

  31. Kussul E., Baidyk T., Neural Random Threshold Classifier in OCR Application, Proceedings of the Second All-Ukrainian Intern. Conf. UkrOBRAZ'94, Ukraine, December 1994, pp. 154–157.

    Google Scholar 

  32. Kussul E., Kasatkina L., Rachkovskij D., Wunsch D., Application of Random Threshold Neural Networks for Diagnostics of Micro Machine Tool Condition, International Joint Conference on Neural Networks, NJ Alaska, 1998, Vol. 1, pp. 241–244.

    Google Scholar 

  33. Baidyk T., Kussul E., Makeyev O. Texture Recognition with Random Subspace Neural Classifier, WSEAS Transactions on Circuits and Systems, Issue 4, Vol. 4, April 2005, pp. 319–325.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst Kussul .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kussul, E., Baidyk, T., Wunsch, D.C. (2010). Neural Classifiers. In: Neural Networks and Micromechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02535-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02535-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02534-1

  • Online ISBN: 978-3-642-02535-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics