Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

A biological system can be exceedingly small. Many of the cells are very tiny, but they are very active; they manufacture various substances; they walk around; they wiggle; and they do all kinds of marvelous things – all on a very small scale. Also, they store information. Consider the possibility that we too can make a thing very small which does what we want – that we can manufacture an object that maneuvers at that level.

(From the talk Thereʼs Plenty of Room at the Bottom, delivered by Richard P. Feynman at the annual meeting of the American Physical Society at the California Institute of Technology; Pasadena, December 29, 1959).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

atomic force microscope

AFM:

atomic force microscopy

DLP:

digital light processing

DMD:

deformable mirror display

DMD:

digital mirror device

DNA:

deoxyribonucleic acid

DOD:

Department of Defense

DOE:

Department of Energy

DOE:

diffractive optical element

EPA:

Environmental Protection Agency

EU:

European Union

FP6:

Sixth Framework Program

GMR:

giant magnetoresistive

IWGN:

Interagency Working Group on Nanoscience, Engineering, and Technology

MEMS:

microelectromechanical system

MOEMS:

microoptoelectromechanical system

MST:

microsystem technology

NASA:

National Aeronautics and Space Administration

NEMS:

nanoelectromechanical system

NIH:

National Institute of Health

NIST:

National Institute of Standards and Technology

NNI:

National Nanotechnology Initiative

NOEMS:

nanooptoelectromechanical system

NSF:

National Science Foundation

NSTC:

National Science and Technology Council

QB:

quantum box

QWR:

quantum wire

RNA:

ribonucleic acid

STM:

scanning tunneling microscope

STM:

scanning tunneling microscopy

SWCNT:

single-wall carbon nanotube

SWCNT:

single-walled carbon nanotube

bioMEMS:

biomedical microelectromechanical system

bioNEMS:

biomedical nanoelectromechanical system

References

  1. R.J. Chen, H.C. Choi, S. Bangsaruntip, E. Yenilmex, X. Tang, Q. Wang, Y.L. Chang, H. Dai: An investigation of the mechanisms of electrode sensing of protein adsorption on carbon nanotube devices, J. Am. Chem. Soc. 126, 1563–1568 (2004)

    Article  Google Scholar 

  2. D. Srivastava: Computational nanotechnology of carbon nanotubes. In: Carbon Nanotubes: Science and Applications, ed. by M. Meyyappan (CRC, Boca Raton 2004) pp. 25–36

    Chapter  Google Scholar 

  3. W.G. van der Wiel, S. De Franceschi, J.M. Elzerman, T. Fujisawa, S. Tarucha, L.P. Kauwenhoven: Electron transport through double quantum dots, Rev. Mod. Phys. 75, 1–22 (2003)

    Article  Google Scholar 

  4. Anonymous: Microelectromechanical Systems: Advanced Materials and Fabrication Methods (National Academy Press, Washington 1997), NMAB-483

    Google Scholar 

  5. M. Roukes: Nanoelectromechanical systems face the future, Phys. World 14, 25–31 (2001)

    Google Scholar 

  6. J.C. Eloy: Status of the MEMS Industry (Yole Developpement, Lyon 2005), presented at SPIE Photonics West, San Jose (2005)

    Google Scholar 

  7. S. Lawrence: Nanotech grows up, Technol. Rev. 108(6), 31 (2005)

    MathSciNet  Google Scholar 

  8. R.P. Feynman: Thereʼs plenty of room at the bottom, Eng. Sci. 23, 22–36 (1960), http://www.zyvex.com/nanotech/feynman.html

    Google Scholar 

  9. I. Amato: Nanotechnology (2000), http://www.ostp.gov/nstc/html/iwgn/iwgn.public.brochure/welcome.htm or http://www.nsf.gov/home/crssprgm/nano/nsfnnireports.htm

  10. Anonymous: National Nanotechnology Initiative (2000), http://www.ostp.gov/nstc/html/iwgn.fy01budsuppl/nni.pdf or http://www.nsf.gov/home/crssprgm/nano/nsfnnireports.htm

  11. Anonymous: Towards a European Strategy for Nanotechnology (European Commission Research Directorate General, Brussels 2004)

    Google Scholar 

  12. Y. Bar-Cohen (Ed.): Biomimetics – Biologically Inspired Technologies (CRC, Boca Raton 2005)

    Google Scholar 

  13. B. Bhushan: Biomimetics: Lessons from nature – An overview, Philos. Trans. R. Soc. Lond. Ser. A 367, 1445–1486 (2009)

    Article  Google Scholar 

  14. C.J. Jones, S. Aizawa: The bacterial flagellum and flagellar motor: Structure, assembly, and functions, Adv. Microb. Physiol. 32, 109–172 (1991)

    Article  Google Scholar 

  15. B. Bhushan, Y.C. Jung: Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro-/nanopatterned surfaces, J. Phys. D 20, 225010 (2008)

    Google Scholar 

  16. K. Koch, B. Bhushan, W. Barthlott: Diversity of structure, morphology, and wetting of plant surfaces, Soft Matter 4, 1943–1963 (2008)

    Article  Google Scholar 

  17. K. Koch, B. Bhushan, W. Barthlott: Multifunctional surface structures of plants: An inspiration for biomimetics (invited), Prog. Mater. Sci. 54, 137–178 (2009)

    Article  Google Scholar 

  18. M. Nosonovsky, B. Bhushan: Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics (Springer, Berlin, Heidelberg 2008)

    MATH  Google Scholar 

  19. M. Nosonovsky, B. Bhushan: Roughness-induced superhydrophobicity: A way to design non-adhesive surfaces, J. Phys. D 20, 225009 (2008)

    Google Scholar 

  20. M. Nosonovsky, B. Bhushan: Multiscale effects and capillary interactions in functional biomimetic surfaces for energy conversion and green engineering, Philos. Trans. R. Soc. Lond. Ser. A 367, 1511–1539 (2009)

    Article  Google Scholar 

  21. B. Bhushan: Principles and Applications of Tribology (Wiley, New York 1999)

    Google Scholar 

  22. B. Bhushan (Ed.): Introduction to Tribology (Wiley, New York 2002)

    Google Scholar 

  23. S. Gorb (Ed.): Attachment Devices of Insect Cuticle (Kluwer, Dordrecht 2001)

    Google Scholar 

  24. K. Autumn, Y.A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny, R. Fearing, R.J. Full: Adhesive force of a single gecko foot-hair, Nature 405, 681–685 (2000)

    Article  Google Scholar 

  25. B. Bhushan: Adhesion of multi-level hierarchical attachment systems in gecko feet, J. Adhes. Sci. Technol. 21, 1213–1258 (2007)

    Article  Google Scholar 

  26. A.K. Geim, S.V. Dubonos, I.V. Grigorieva, K.S. Novoselov, A.A. Zhukov, S.Y. Shapoval: Microfabricated adhesive mimicking gecko foot-hair, Nat. Mater. 2, 461–463 (2003)

    Article  Google Scholar 

  27. B. Bhushan, R.A. Sayer: Surface characterization and friction of a bio-inspired reversible adhesive tape, Microsyst. Technol. 13, 71–78 (2007)

    Article  Google Scholar 

  28. S.A. Velcro: Improvements in or relating to a method and a device for producing velvet type fabric, Switzerland Patent 721338 (1995)

    Google Scholar 

  29. D.W. Bechert, M. Bruse, W. Hage, R. Meyer: Fluid mechanics of biological surfaces and their technological application, Naturwissenschaften 87, 157–171 (2000)

    Article  Google Scholar 

  30. B. Bhushan, Y.C. Jung, K. Koch: Micro-, nano-, and hierarchical structures for superhydrophobicity, self-cleaning, and low adhesion, Philos. Trans. R. Soc. Lond. Ser. A 367, 1631–1672 (2009)

    Article  Google Scholar 

  31. X.F. Gao, L. Jiang: Biophysics: Water-repellent legs of water striders, Nature 432, 36 (2004)

    Article  Google Scholar 

  32. H. Gao, X. Wang, H. Yao, S. Gorb, E. Arzt: Mechanics of hierarchical adhesion structures of geckos, Mech. Mater. 37, 275–285 (2005)

    Article  Google Scholar 

  33. W.E. Reif: Squamation and Ecology of Sharks, Courier Forschungsinst. Senckenberg, Vol. 78 (Schweizerbart, Stuttgart 1985)

    Google Scholar 

  34. J. Genzer, K. Efimenko: Recent developments in superhydrophobic surfaces and their relevance to marine fouling: A review, Biofouling 22, 339–360 (2006)

    Article  Google Scholar 

  35. C.G. Bernhard, W.H. Miller, A.R. Möller: The insect corneal nipple array: A biological, broad-band impedance transformer that acts as a antireflection coating, Acta Physiol. Scand. 63, 1–79 (1965)

    Article  Google Scholar 

  36. J.P. Youngblood, N.R. Sottos: Bioinspired materials for self-cleaning and self-healing, MRS Bulletin 33, 732–738 (2008)

    Article  Google Scholar 

  37. Anonymous: Small Tech 101 – An Introduction to Micro and Nanotechnology (Small Times, 2003)

    Google Scholar 

  38. M. Schulenburg: Nanotechnology – Innovation for Tomorrowʼs World (European Commission Research Directorate General, Brussels 2004)

    Google Scholar 

  39. R.S. Muller, R.T. Howe, S.D. Senturia, R.L. Smith, R.M. White: Microsensors (IEEE, New York 1991)

    Google Scholar 

  40. I. Fujimasa: Micromachines: A New Era in Mechanical Engineering (Oxford Univ. Press, Oxford 1996)

    Google Scholar 

  41. W.S. Trimmer (Ed.): Micromachines and MEMS, Classical and Seminal Papers to 1990 (IEEE, New York 1997)

    Google Scholar 

  42. B. Bhushan: Tribology Issues and Opportunities in MEMS (Kluwer, Dordrecht 1998)

    Book  Google Scholar 

  43. G.T.A. Kovacs: Micromachined Transducers Sourcebook (WCB McGraw-Hill, Boston 1998)

    Google Scholar 

  44. M. Elwenspoek, R. Wiegerink: Mechanical Microsensors (Springer, Berlin Heidelberg 2001)

    Book  Google Scholar 

  45. S.D. Senturia: Microsystem Design (Kluwer, Boston 2000)

    Google Scholar 

  46. T.R. Hsu: MEMS and Microsystems: Design and Manufacture (McGraw-Hill, Boston 2002)

    Google Scholar 

  47. M. Madou: Fundamentals of Microfabrication: The Science of Miniaturization, 2nd edn. (CRC, Boca Raton 2002)

    Google Scholar 

  48. A. Hierlemann: Integrated Chemical Microsensor Systems in CMOS Technology (Springer, Berlin Heidelberg 2005)

    Google Scholar 

  49. B. Bhushan: Tribology and Mechanics of Magnetic Storage Devices, 2nd edn. (Springer, Berlin Heidelberg 1996)

    Book  Google Scholar 

  50. K.E. Drexler: Nanosystems: Molecular Machinery, Manufacturing and Computation (Wiley, New York 1992)

    Google Scholar 

  51. G. Timp (Ed.): Nanotechnology (Springer, New York 1999)

    Google Scholar 

  52. M.S. Dresselhaus, G. Dresselhaus, P. Avouris: Carbon Nanotubes – Synthesis, Structure, Properties, and Applications (Springer, Berlin Heidelberg 2001)

    Book  Google Scholar 

  53. E.A. Rietman: Molecular Engineering of Nanosystems (Springer, Berlin, Heidelberg 2001)

    Book  Google Scholar 

  54. W.A. Goddard, D.W. Brenner, S.E. Lyshevski, G.J. Iafrate (Eds.): Handbook of Nanoscience, Engineering,and Technology (CRC, Boca Raton 2002)

    Google Scholar 

  55. H.S. Nalwa (Ed.): Nanostructured Materials and Nanotechnology (Academic, San Diego 2002)

    Google Scholar 

  56. C.P. Poole, F.J. Owens: Introduction to Nanotechnology (Wiley, New York 2003)

    Google Scholar 

  57. A. Manz, H. Becker (Eds.): Microsystem Technology in Chemistry and Life Sciences, Top. Curr. Chem., Vol. 194 (Springer, Berlin, Heidelberg 1998)

    Google Scholar 

  58. J. Cheng, L.J. Kricka (Eds.): Biochip Technology (Harwood, Philadephia 2001)

    Google Scholar 

  59. M.J. Heller, A. Guttman (Eds.): Integrated Microfabricated Biodevices (Marcel Dekker, New York 2001)

    Google Scholar 

  60. C. Lai Poh San, E.P.H. Yap (Eds.): Frontiers in Human Genetics (World Scientific, Singapore 2001)

    Google Scholar 

  61. C.H. Mastrangelo, H. Becker (Eds.): Microfluidics and BioMEMS, Proc. SPIE, Vol. 4560 (SPIE, Bellingham 2001)

    Google Scholar 

  62. H. Becker, L.E. Locascio: Polymer microfluidic devices, Talanta 56, 267–287 (2002)

    Article  Google Scholar 

  63. A. van der Berg (Ed.): Lab-on-a-Chip: Chemistry in Miniaturized Synthesis and Analysis Systems (Elsevier, Amsterdam 2003)

    Google Scholar 

  64. P. Gravesen, J. Branebjerg, O.S. Jensen: Microfluidics – A review, J. Micromech. Microeng. 3, 168–182 (1993)

    Article  Google Scholar 

  65. R.P. Lanza, R. Langer, J. Vacanti (Eds.): Principles of Tissue Engineering, 2nd edn. (Academic, San Diego 2000)

    Google Scholar 

  66. K. Park (Ed.): Controlled Drug Delivery: Challenges and Strategies (American Chemical Society, Washington 1997)

    Google Scholar 

  67. P.Å. Öberg, T. Togawa, F.A. Spelman: Sensors in Medicine and Health Care (Wiley, New York 2004)

    Book  Google Scholar 

  68. M. Scott: MEMS and MOEMS for national security applications, Proc. SPIE 4980, xxxvii–xliv (2003)

    Google Scholar 

  69. B. Bhushan: Handbook of Micro/Nanotribology (CRC, Boca Raton 1999)

    Google Scholar 

  70. B. Bhushan (Ed.): Nanotribology and Nanomechanics – An Introduction, 2nd edn. (Springer, Berlin, Heidelberg 2008)

    Google Scholar 

  71. Anonymous: Current status and future needs, Proc. Workshop Res. Train. Nanosci. Nanotechnol. (European Commission Research Directorate General, Brussels 2005)

    Google Scholar 

  72. M. Di Ventra, S. Evoy, J.R. Heflin: Introduction to Nanoscale Science and Technology (Springer, Berlin Heidelberg 2004)

    Book  Google Scholar 

  73. A. Hett: Nanotechnology – Small Matter, Many Unknowns (Swiss Reinsurance Company, Zurich 2004)

    Google Scholar 

  74. M. Köhler, W. Fritzsche: Nanotechnology (Wiley, New York 2004)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Bhushan, B. (2010). Introduction to Nanotechnology. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02525-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02525-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02524-2

  • Online ISBN: 978-3-642-02525-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics