Perception of Impacted Materials: Sound Retrieval and Synthesis Control Perspectives

  • Mitsuko Aramaki
  • Loïc Brancheriau
  • Richard Kronland-Martinet
  • Sølvi Ystad
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5493)


In this study, we aimed at determining statistical models that allowed for the classification of impact sounds according to the perceived material (Wood, Metal and Glass). For that purpose, everyday life sounds were recorded, analyzed and resynthesized to insure the generation of realistic sounds. Listening tests were conducted to define sets of typical sounds of each material category by using a statistical approach. For the construction of statistical models, acoustic descriptors known to be relevant for timbre perception and for material identification were investigated. These models were calibrated and validated using a binary logistic regression method. A discussion about the applications of these results in the context of sound synthesis concludes the article.


Perceptive Space Material Category Typical Sound Sound Category Impact Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Martínez, J.M.: Mpeg-7 overview, version 10, (last checked March 25, 2008)
  2. 2.
    Foote, J.: Decision-tree probabilty modeling for HMM speech recognition. Ph.D thesis, Cornell university (1994)Google Scholar
  3. 3.
    Roy, P., Pachet, F., Krakowski, S.: Improving the classification of percussive sounds with analytical features: A case study. In: Proceedings of the 8th International Conference on Music Information Retrieval, Vienna, Austria (2007)Google Scholar
  4. 4.
    Slaney, M.: Mixtures of probability experts for audio retrieval and indexing. In: Proceedings of the IEEE International Conference on Multimedia and Expo, Lausanne, Switzerland (2002)Google Scholar
  5. 5.
    Pachet, F., Zils, A.: Evolving automatically high-level music descriptors from acoustic signals. In: Wiil, U.K. (ed.) CMMR 2003. LNCS, vol. 2771, pp. 42–53. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    McAdams, S., Winsberg, S., Donnadieu, S., De Soete, G., Krimphoff, J.: Perceptual scaling of synthesized musical timbres: common dimensions, specificities, and latent subject classes. Psychological Research 58, 177–192 (1995)CrossRefGoogle Scholar
  7. 7.
    Peeters, G., McAdams, S., Herrera, P.: Instrument sound description in the context of mpeg-7. In: Proceedings of the International Computer Music Conference, Berlin, Germany (2000)Google Scholar
  8. 8.
    Aramaki, M., Kronland-Martinet, R.: Analysis-synthesis of impact sounds by real-time dynamic filtering. IEEE Transactions on Audio, Speech, and Language Processing 14(2), 695–705 (2006)CrossRefGoogle Scholar
  9. 9.
    Parncutt, R.: Harmony - A Psychoacoustical Approach. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  10. 10.
    Aramaki, M., Baillères, H., Brancheriau, L., Kronland-Martinet, R., Ystad, S.: Sound quality assessment of wood for xylophone bars. Journal of the Acoustical Society of America 121(4), 2407–2420 (2007)CrossRefGoogle Scholar
  11. 11.
    Wildes, R.P., Richards, W.A.: Recovering material properties from sound. In: Richards, W.A. (ed.), ch. 25, pp. 356–363. MIT Press, Cambridge (1988)Google Scholar
  12. 12.
    McAdams, S.: Perspectives on the contribution of timbre to musical structure. Computer Music Journal 23(3), 85–102 (1999)CrossRefGoogle Scholar
  13. 13.
    Sethares, W.A.: Local consonance and the relationship between timbre and scale. Journal of the Acoustical Society of America 94(3), 1218–1228 (1993)CrossRefGoogle Scholar
  14. 14.
    Vassilakis, P.N.: Sra: A web-based research tool for spectral and roughness analysis of sound signals. In: Proceedings of the 4th Sound and Music Computing (SMC) Conference, pp. 319–325 (2007)Google Scholar
  15. 15.
    Tucker, S., Brown, G.J.: Investigating the perception of the size, shape and material of damped and free vibrating plates. Technical Report CS-02-10, Université de Sheffield, Department of Computer Science (2002)Google Scholar
  16. 16.
    Giordano, B.L., McAdams, S.: Material identification of real impact sounds: Effects of size variation in steel, wood, and plexiglass plates. Journal of the Acoustical Society of America 119(2), 1171–1181 (2006)CrossRefGoogle Scholar
  17. 17.
    Klatzky, R.L., Pai, D.K., Krotkov, E.P.: Perception of material from contact sounds. Presence: Teleoperators and Virtual Environments 9(4), 399–410 (2000)CrossRefGoogle Scholar
  18. 18.
    Aramaki, M., Kronland-Martinet, R., Voinier, T., Ystad, S.: A percussive sound synthetizer based on physical and perceptual attributes. Computer Music Journal 30(2), 32–41 (2006)CrossRefGoogle Scholar
  19. 19.
    Aramaki, M., Besson, M., Kronland-Martinet, R., Ystad, S.: Computer Music Modeling and Retrieval - Genesis of Meaning of Sound and Music. In: Ystad, S., Kronland-Martinet, R., Jensen, K. (eds.) Timbre perception of sounds from impacted materials: behavioral, electrophysiological and acoustic approaches. LNCS, vol. 5493, pp. 1–17. Springer, Heidelberg (2009)Google Scholar
  20. 20.
    Aramaki, M., Kronland-Martinet, R., Voinier, T., Ystad, S.: Timbre control of a real-time percussive synthesizer. In: Proceedings of the 19th International Congress on Acoustics, CD-ROM (2007) ISBN: 84-87985-12-2 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mitsuko Aramaki
    • 1
    • 2
  • Loïc Brancheriau
    • 3
  • Richard Kronland-Martinet
    • 4
  • Sølvi Ystad
    • 4
  1. 1.CNRS - Institut de Neurosciences Cognitives de la MéditerranéeMarseille Cedex 20France
  2. 2.Aix-Marseille - UniversitéMarseille Cedex 07France
  3. 3.CIRAD - PERSYST DepartmentMontpellier Cedex 5France
  4. 4.CNRS - Laboratoire de Mécanique et d’AcoustiqueMarseille Cedex 20France

Personalised recommendations