Musically Meaningful or Just Noise? An Analysis of On-line Artist Networks

  • Kurt Jacobson
  • Mark Sandler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5493)


A sample of the Myspace social network is examined. Using methods from complex network theory, we show empirically that the structure of the Myspace artist network is related to the concept of musical genre. A modified assortativity coefficient calculation shows that artists preferentially form network connections with other artists of the same genre. We also show there is a clear trend relating the geodesic distance between artists and genre label associations - that is artists with the same genre associations tend to be closer in the network. These findings motivate the use of on-line social networks as data resources for musicology and music information retrieval.


Degree Distribution Geodesic Distance Network Sample Artist Network Musical Genre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shepherd, J.: Sociology of music,
  2. 2.
    Costa, L.F., Rodrigues, F.A., Travieso, G., Boas, P.R.V.: Characterization of complex networks: A survey of measurements. Advances In Physics 56, 167 (2007)CrossRefGoogle Scholar
  3. 3.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167 (2003), MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gleiser, P., Danon, L.: Community structure in jazz. Advances in Complex Systems 6, 565 (2003)CrossRefGoogle Scholar
  5. 5.
    Cano, P., Celma, O., Koppenberger, M., Buldu, J.M.: The topology of music recommendation networks. (2005),
  6. 6.
    Park, J., Celma, O., Koppenberger, M., Cano, P., Buldu, J.M.: The social network of contemporary popular musicians. Physics and Society (2006)Google Scholar
  7. 7.
    Celma, O., Lamere, P.: Music recommendation. ISMIR Tutorial (2007)Google Scholar
  8. 8.
    Anglade, A., Tiemann, M., Vignoli, F.: Virtual communities for creating shared music channels. In: Proc. of Int. Conference on Music Information Retrieval (2007)Google Scholar
  9. 9.
    Lambiotte, R., Ausloos, M.: On the genre-fication of music: a percolation approach (long version). The European Physical Journal B 50, 183 (2006)CrossRefGoogle Scholar
  10. 10.
    Ahn, Y., Han, S., Kwak, H., Moon, S., Jeong, H.: Analysis of topological characteristics of huge online social networking services. In: WWW 2007: Proceedings of the 16th international conference on World Wide Web, pp. 835–844. ACM, New York (2007), Google Scholar
  11. 11.
    Lee, S.H., Kim, P.-J., Jeong, H.: Statistical properties of sampled networks. Physical Review E 73, 102–109 (2006)Google Scholar
  12. 12.
    Kwak, H., Han, S., Ahn, Y.-Y., Moon, S., Jeong, H.: Impact of snowball sampling ratios on network characteristics estimation: A case study of cyworld. KAIST, Tech. Rep. CS/TR-2006-262 (November 2006)Google Scholar
  13. 13.
    Amaral, L.A.N., Scala, A., Barthélémy, M., Stanley, H.E.: Classes of small-world networks. In: Proceeding of the National Academy of Sciences (2000)Google Scholar
  14. 14.
    Newman, M.E.J.: Mixing patterns in networks. Phys. Rev. E 67(2), 026126 (2003)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Milgram, S.: The small world problem. Psychol. Today 1(61-67) (1967)Google Scholar
  16. 16.
    Logan, B., Salomon, A.: A music similarity function based on signal analysis. In: Multimedia and Expo ICME, pp. 745–748 (2001)Google Scholar
  17. 17.
    Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Kurt Jacobson
    • 1
  • Mark Sandler
    • 1
  1. 1.Centre for Digital MusicQueen Mary UniversityUK

Personalised recommendations