Perception of Harmonic and Inharmonic Sounds: Results from Ear Models

  • Albrecht Schneider
  • Klaus Frieler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5493)


We report on experiments in which musically relevant harmonic and inharmonic sounds have been fed into computer-based ear models (or into modules which at least simulate parts of the peripheral auditory system) working either in the frequency or in the time domain. For a major chord in just intonation, all algorithms produced reliable and interpretable output, which explains mechanisms of pitch perception. One model also yields data suited to demonstrate how sensory consonance and ’fusion’ are contained in the ACF of the neural activity pattern.

With musical sounds from instruments (carillon, gamelan) which represent different degrees of inharmonicity, the performance of the modules reflects difficulties in finding correct spectral and/or virtual pitch(es) known also from behavioral experiments. Our measurements corroborate findings from neurophysiology according to which much of the neural processing relevant for perception of pitch and consonance is achieved subcortically.


Spectral Component Basilar Membrane Critical Band Complex Tone Pitch Perception 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bachmann, W.: Signalanalyse. Grundlagen und mathematische Verfahren. Vieweg, Braunschweig (1992)Google Scholar
  2. 2.
    Bader, R.: Additional modes in transients of a Balinese gender dasa plate. Journal of the Acoust. Soc. of America 116, 2621 (2004) (abstract)CrossRefGoogle Scholar
  3. 3.
    Bader, R.: Computational Mechanics of the classical guitar. Springer, Berlin (2005)Google Scholar
  4. 4.
    Balaban, M., Ebcioglu, K., Laske, O.: Understanding Music with AI: Perspectives on Music cognition. The AAAI Pr./MIT Pr., Menlo Park/Cambridge (1992)Google Scholar
  5. 5.
    Boersma, P.: Accurate short-term analysis of the fundamental frequency and the harmonics-to-noise-ratio of sampled sound. Proc. of the Inst. of Phonetic Sciences 17, 97–110 (1993)Google Scholar
  6. 6.
    Boersma, P., Weenink, D.: Praat: doing phonetics by computer. Version 5.038 (2008)Google Scholar
  7. 7.
    Bregman, A.: Auditory Scene Analysis. In: The perceptual organization of sound. MIT Pr., Cambridge (1990)Google Scholar
  8. 8.
    Cariani, P., Delgutte, B.: Neural Correlates of the pitch of complex tones. I: Pitch and pitch salience. Journal of Neurophysiology 76, 1698–1716 (1996)Google Scholar
  9. 9.
    Cariani, P., Delgutte, B.: Neural Correlates of the pitch of complex tones. II: Pitch shift, pitch ambiguity, phase invariance, pitch circularity, and the dominance region for pitch. Journal of Neurophysiology 76, 1717–1734 (1996)Google Scholar
  10. 10.
    Clarke, E.: Ways of Listening. A ecological approach to the perception of musical meaning. Oxford U. Pr., London (2005)CrossRefGoogle Scholar
  11. 11.
    Cohen, M., Grossberg, S., Wyse, L.: A spectral network model of pitch perception. Journal of the Acoust. Soc. of America 98, 862–879 (1995)CrossRefGoogle Scholar
  12. 12.
    de Boer, E.: On the “Residue” and auditory pitch perception. In: Keidel, W.D., Neff, W.D. (eds.) Handbook of Sensory physiology, ch. 13, vol. V, 3. Springer, Berlin (1976)Google Scholar
  13. 13.
    de Cheveigné, A.: Pitch perception models. In: Plack, C., et al. (eds.) Pitch. Neural coding and perception, pp. 169–233 (2005)Google Scholar
  14. 14.
    de Ribaupierre, F.: Acoustical information processing in the auditory thalamus and cerebral cortex. In: Ehret, G., Romand, R. (eds.) The Central Auditory System, ch. 5, pp. 317–388. Oxford U. Pr., Oxford (1997)Google Scholar
  15. 15.
    Ehret, G.: The auditory midbrain, a “shunting yard” of acoustical information processing. In: Ehret, G., Romand, R. (eds.) The Central Auditory System, ch. 4, pp. 259–316. Oxford U. Pr., Oxford (1997)Google Scholar
  16. 16.
    Handel, S.: Listening. An Introduction to the perception of auditory events. MIT Pr., Cambridge (1989)Google Scholar
  17. 17.
    Hartmann, W.: Signals, Sound, and Sensation. Springer, New York (1998)Google Scholar
  18. 18.
    Hermes, D.: Measurement of pitch by subharmonic matching. Journal of the Acoust. Soc. of America 83, 257–264 (1988)CrossRefGoogle Scholar
  19. 19.
    Hesse, H.-P.: Die Wahrnehmung von Tonhöhe und Klangfarbe als Problem der Hörtheorie. A. Volk, Köln (1972)Google Scholar
  20. 20.
    Hesse, H.-P.: The Judgment of musical intervals. In: Clynes, M. (ed.) Music, mind and brain, pp. 217–225. Plenum Pr., New York (1982)CrossRefGoogle Scholar
  21. 21.
    Houtsma, A.: Pitch perception. In: Moore, B. (ed.) Hearing, 2nd edn., pp. 267–295. Academic Pr., London (1995)CrossRefGoogle Scholar
  22. 22.
    Keidel, W.-D.: Biokybernetik des Menschen. Wiss. Buchges, Darmstadt (1989)Google Scholar
  23. 23.
    Keidel, W.-D.: Das Phänomen des Hörens. Ein interdisziplinärer Diskurs. Naturwissenschaften 79, 300–310, 347–357 (1992)CrossRefGoogle Scholar
  24. 24.
    Keiler, F., Karadogan, C., Zölzer, U., Schneider, A.: Analysis of transient musical sounds by auto-regressive modeling. In: Proc. 6th Intern. Conf. on Digital Audio Effects DAFx 2003, pp. 301–304. Queen Mary, Univ. of London, London (2003)Google Scholar
  25. 25.
    Krumhansl, C.: Cognitive Foundations of musical Pitch. Oxford U. Pr., Oxford (1998)Google Scholar
  26. 26.
    Langner, G.: Die zeitliche Verarbeitung periodischer Signale im Hörsystem: Neuronale Repräsentation von Tonhöhe, Klang und Harmonizität. Zeitschrift für Audiologie 46, 8–21 (2007)Google Scholar
  27. 27.
    Leman, M.: Music and Schema theory. Cognitive foundations of systematic musicology. Springer, Berlin (1995)CrossRefGoogle Scholar
  28. 28.
    Lopez-Poveda, E.: Spectral processing by the peripheral auditory system: facts and models. Intern. Rev. of Neurobiology 70, 7–48 (2005)CrossRefGoogle Scholar
  29. 29.
    Lopez-Poveda, E., Meddis, R.: A human nonlinear cochlear filterbank. Journal of the Acoust. Soc. of America 110, 3107–3118 (2001)CrossRefGoogle Scholar
  30. 30.
    Lyon, R., Shamma, S.: Auditory representations of timbre and pitch. In: Hawkins, H., McMullen, T., Popper, A., Fay, R. (eds.) Auditory Computation, ch. 6, pp. 221–270. Springer, New York (1996)CrossRefGoogle Scholar
  31. 31.
    McAdams, S., Bigand, E. (eds.): Thinking in Sound. The Cognitive psychology of human audition. Clarendon Pr., Oxford (1993)Google Scholar
  32. 32.
    Meddis, R., Hewitt, M.: Virtual pitch and phase sensitivity of a computer model of the auditory periphery. I: Pitch identification. Journal of the Acoust. Soc. of America 89, 2866–2882 (1991a)CrossRefGoogle Scholar
  33. 33.
    Meddis, R., Hewitt, M.: Virtual pitch and phase sensitivity of a computer model of the auditory periphery. II: Phase sensitivity. Journal of the Acoust. Soc. of America 89, 2883–2894 (1991b)CrossRefGoogle Scholar
  34. 34.
    Meddis, R., O’Mard, L.: A unitary model of pitch perception. Journal of the Acoust. Soc. of America 102, 1811–1820 (1997)CrossRefGoogle Scholar
  35. 35.
    Meddis, R., O’Mard, L.: AMS Tutorial (Version 2.3). Univ. of Essex, Dept. of Psychol., Colchester (2003)Google Scholar
  36. 36.
    Meddis, R.: Auditory-nerve first-spike latency and auditory absolute threshold: a computer model. Journal of the Acoust. Soc. of America 119, 406–417 (2006)CrossRefGoogle Scholar
  37. 37.
    Musacchia, G., Sams, M., Skoe, E., Kraus, N.: Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proc. Nat. Acad. Science 104(40), 15894–15898 (2007)CrossRefGoogle Scholar
  38. 38.
    Patterson, R., Allerhand, M., Giguère, C.: Time-domain modeling of peripheral auditory processing: a modular architecture and a software platform. Journal of the Acoust. Soc. of America 98, 1890–1894 (1995)CrossRefGoogle Scholar
  39. 39.
    Plack, C., Oxenham, A.: The Psychophysics of pitch. In: Plack, C., et al. (eds.) Pitch. Neural coding and perception, pp. 7–55. Springer, New York (2005)Google Scholar
  40. 40.
    Plack, C., Oxenham, A., Fay, R., Popper, A. (eds.): Pitch. Neural Coding and Perception. Springer, New York (2005)Google Scholar
  41. 41.
    Popper, A., Fay, R. (eds.): The Mammalian Auditory Pathway: Neurophysiology. Springer, Berlin (1992)Google Scholar
  42. 42.
    Rameau, J.-P.: Traité de l’harmonie. Ballard, Paris (1722)Google Scholar
  43. 43.
    Rameau, J.-P.: Génération harmonique ou traité de musique théorique et pratique. Prault fils, Paris (1737)Google Scholar
  44. 44.
    Roberts, B.: Spectral pattern, grouping, and the pitches of complex tones and their components. Acta Acustica united with Acustica 91, 945–957 (2005)Google Scholar
  45. 45.
    Schneider, A.: Verschmelzung, tonal fusion, and consonance: Carl Stumpf revisited. In: Leman, M. (ed.) Music, Gestalt, and Computing. Studies in Cognitive and Systematic Musicology, pp. 117–143. Springer, Berlin (1997a)Google Scholar
  46. 46.
    Schneider, A.: Tonhöhe - Skala - Klang. Akustische, tonometrische und psychoakustische Studien auf vergleichender Grundlage. Orpheus-Verlag, Bonn (1997b)Google Scholar
  47. 47.
    Schneider, A.: Inharmonic Sounds: implications as to ‘Pitch’, ‘Timbre’ and ‘Consonance’. Journal of New Music Research 29, 275–301 (2000a)CrossRefGoogle Scholar
  48. 48.
    Schneider, A.: Virtual Pitch and musical instrument acoustics: the case of idiophones. In: Enders, B., Stange-Elbe, J. (eds.) Musik im virtuellen Raum. KlangArt-Kongreß, pp. 397–417. Rasch, Osnabrück (2000b)Google Scholar
  49. 49.
    Schneider, A.: Complex inharmonic sounds, perceptual ambiguity, and musical imagery. In: Godøy, R.I., Jørgensen, H. (eds.) Musical Imagery, pp. 95–116. Swets & Zeitlinger, Lisse, Abingdon (2001a)Google Scholar
  50. 50.
    Schneider, A.: Sound, Pitch, and Scale: From “Tone measurements” to sonological analysis in ethnomusicology. Ethnomusicology 45, 489–519 (2001b)CrossRefGoogle Scholar
  51. 51.
    Schneider, A.: Foundations of Systematic Musicology: a study in history and theory. In: Schneider, A. (ed.) Systematic and Comparative Musicology: concepts, methods, findings, pp. 11–61. P. Lang, Frankfurt/M. (2008)Google Scholar
  52. 52.
    Schneider, A., Leman, M.: Sonological and psychoacoustic Characteristics of carillon bells. In: Leman, M. (ed.) The quality of bells. Brugge Eurocarillon 2002 (=Proc. Of the 16th Meeting of the FWO Research Soc. on Foundations of Music research). IPEM, Univ. of Ghent, Ghent (2002)Google Scholar
  53. 53.
    Schneider, A., Bader, R.: Akustische Grundlagen musikalischer Klänge. In: Mitteilungen der Math. Ges. in Hamburg Bd XXII, pp. 27–44 (2003)Google Scholar
  54. 54.
    Schulze, H., Neubauer, H., Ohl, F., Hess, A., Scheich, H.: Representation of stimulus periodicity in the auditory cortex: recent findings and new perspectives. Acta Acustica united with Acustica 88, 399–407 (2002)Google Scholar
  55. 55.
    Sinex, D.: Spectral processing and sound source determination. International Review of Neurobiology 70, 371–398 (2005)CrossRefGoogle Scholar
  56. 56.
    Sloboda, J.: The musical Mind. The Cognitive Psychology of Music. Clarendon Pr., Oxford (1985)Google Scholar
  57. 57.
    Stumpf, C.: Tonpsychologie, Bd 2. J. Barth, Leipzig (1890)Google Scholar
  58. 58.
    Stumpf, C.: Die Sprachlaute. J. Springer, Berlin (1926)CrossRefGoogle Scholar
  59. 59.
    Terhardt, E.: Calculating virtual pitch. Hearing Research 1, 155–182 (1989)CrossRefGoogle Scholar
  60. 60.
    Terhardt, E.: Akustische Kommunikation. Springer, Berlin (1998)CrossRefGoogle Scholar
  61. 61.
    Terhardt, E., Seewann, M.: Pitch of complex signals according to virtual-pitch theory: tests, examples, and predictions. Journal of the Acoust. Soc. of America 71, 671–678 (1982a)CrossRefGoogle Scholar
  62. 62.
    Terhardt, E., Seewann, M.: Algorithm for extraction of pitch salience from complex tonal signals. Journal of the Acoust. Soc. of America 71, 679–688 (1982b)CrossRefGoogle Scholar
  63. 63.
    Terhardt, E., Seewann, M.: Auditive und objektive Bestimmung der Schlagtonhöhe von historischen Kirchenglocken. Acustica 54, 129–144 (1984)Google Scholar
  64. 64.
    Tramo, M., Cariani, P., Delgutte, B., Braida, L.: Neurobiological Foundations for the theory of harmony in Western tonal music. In: Zatorre, R., Peretz, I. (eds.) The Biological Foundations of music (=Annals of the N.Y. Acad. of Sciences), vol. 930, pp. 92–116. New York Acad. of Sciences, New York (2001)Google Scholar
  65. 65.
    Wever, E.: Theory of hearing. Wiley, New York (1949)Google Scholar
  66. 66.
    Wiener, N.: Cybernetics or control and communication in the animal and in the machine, 2nd edn. MIT Pr., New York (1961)CrossRefzbMATHGoogle Scholar
  67. 67.
    Yost, W.: Determining an auditory scene. In: Gazzaniga, M. (ed.) The Cognitive Neurosciences, 3rd edn., ch. 28, pp. 385–396. MIT PR., Cambridge (2004)Google Scholar
  68. 68.
    Zwicker, E., Fastl, H.: Psychophysics. In: Facts and Models, 2nd edn. Springer, Berlin (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Albrecht Schneider
    • 1
  • Klaus Frieler
    • 1
  1. 1.Institute for MusicologyUniversity of HamburgGermany

Personalised recommendations