Timbre Perception of Sounds from Impacted Materials: Behavioral, Electrophysiological and Acoustic Approaches

  • Mitsuko Aramaki
  • Mireille Besson
  • Richard Kronland-Martinet
  • Sølvi Ystad
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5493)


In this paper, timbre perception of sounds from 3 different impacted materials (Wood, Metal and Glass) was examined using a categorization task. Natural sounds were recorded, analyzed and resynthesized and a sound morphing process was applied to construct sound continua between different materials. Participants were asked to categorize the sounds as Wood, Metal or Glass. Typical sounds for each category were defined on the basis of the behavioral data. The temporal dynamics of the neural processes involved in the categorization task were then examined for typical sounds by measuring the changes in brain electrical activity (Event-Related brain Potentials, ERPs). Analysis of the ERP data revealed that the processing of Metal sounds differed significantly from Glass and Wood sounds as early as 150 ms and up to 700 ms. The association of behavioral, electrophysiological and acoustic data allowed us to investigate material categorization: the importance of damping was confirmed and additionally, the relevancy of spectral content of sounds was discussed.


Acoustical Society Material Category Typical Sound Sound Categorization Impact Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Michaels, C.F., Carello, C.: Direct perception. Prentice-Hall, Englewood Cliffs (1981)Google Scholar
  2. 2.
    Grey, J.M.: Multidimensional perceptual scaling of musical timbres. Journal of the Acoustical Society of America 61(5), 1270–1277 (1977)CrossRefGoogle Scholar
  3. 3.
    Krumhansl, C.L.: Why is musical timbre so hard to understand. In: Structure and perception of electroacoustic sound and music. Elsevier, Amsterdam (1989)Google Scholar
  4. 4.
    Krimphoff, J., McAdams, S., Winsberg, S.: Caractérisation du timbre des sons complexes. ii: Analyses acoustiques et quantification psychophysique. Journal de Physique 4(C5), 625–628 (1994)Google Scholar
  5. 5.
    McAdams, S., Winsberg, S., Donnadieu, S., De Soete, G., Krimphoff, J.: Perceptual scaling of synthesized musical timbres: common dimensions, specificities, and latent subject classes. Psychological Research 58, 177–192 (1995)CrossRefGoogle Scholar
  6. 6.
    von Helmholtz, H.L.F.: On the sensations of tone as the physiological basis for the theory of music, 2nd edn (1877)Google Scholar
  7. 7.
    Sethares, W.A.: Local consonance and the relationship between timbre and scale. Journal of the Acoustical Society of America 94(3), 1218–1228 (1993)CrossRefGoogle Scholar
  8. 8.
    Vassilakis, P.N.: Selected Reports in Ethnomusicology (Perspectives in Systematic Musicology). In: Auditory roughness as a means of musical expression, Department of Ethnomusicology, University of California, vol. 12, pp. 119–144 (2005)Google Scholar
  9. 9.
    Freed, D.J.: Auditory correlates of perceived mallet hardness for a set of recorded percussive events. Journal of the Acoustical Society America 87(1), 311–322 (1990)CrossRefGoogle Scholar
  10. 10.
    Tucker, S., Brown, G.J.: Investigating the perception of the size, shape and material of damped and free vibrating plates. Technical Report CS-02-10, Université de Sheffield, Department of Computer Science (2002)Google Scholar
  11. 11.
    van den Doel, K., Pai, D.K.: The sounds of physical shapes. Presence 7(4), 382–395 (1998)CrossRefGoogle Scholar
  12. 12.
    Kunkler-Peck, A.J., Turvey, M.T.: Hearing shape. J. of Experimental Psychology: Human Perception and Performance 26(1), 279–294 (2000)Google Scholar
  13. 13.
    Carello, C., Anderson, K.L., Kunkler-Peck, A.J.: Perception of object length by sound. Psychological Science 9(3), 211–214 (1998)CrossRefGoogle Scholar
  14. 14.
    Lutfi, R.A., Oh, E.L.: Auditory discrimination of material changes in a struck-clamped bar. Journal of the Acoustical Society of America 102(6), 3647–3656 (1997)CrossRefGoogle Scholar
  15. 15.
    Rocchesso, D., Fontana, F.: The sounding object (2003)Google Scholar
  16. 16.
    Lakatos, S., McAdams, S., Caussé, R.: The representation of auditory source characteristics: simple geometric form. Perception & Psychophysics 59, 1180–1190 (1997)CrossRefGoogle Scholar
  17. 17.
    Wildes, R.P., Richards, W.A.: Recovering material properties from sound. In: Richards, W.A. (ed.), ch. 25, pp. 356–363. MIT Press, Cambridge (1988)Google Scholar
  18. 18.
    Gaver, W.W.: How do we hear in the world? explorations of ecological acoustics. Ecological Psychology 5(4), 285–313 (1993)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Klatzky, R.L., Pai, D.K., Krotkov, E.P.: Perception of material from contact sounds. Presence: Teleoperators and Virtual Environments 9(4), 399–410 (2000)CrossRefGoogle Scholar
  20. 20.
    Giordano, B.L., McAdams, S.: Material identification of real impact sounds: Effects of size variation in steel, wood, and plexiglass plates. Journal of the Acoustical Society of America 119(2), 1171–1181 (2006)CrossRefGoogle Scholar
  21. 21.
    Chaigne, A., Lambourg, C.: Time-domain simulation of damped impacted plates: I. theory and experiments. Journal of the Acoustical Society of America 109(4), 1422–1432 (2001)CrossRefGoogle Scholar
  22. 22.
    Valette, C., Cuesta, C.: Mécanique de la corde vibrante (Mechanics of vibrating string). Traité des Nouvelles Technologies, série Mécanique. Hermès (1993)Google Scholar
  23. 23.
    Risset, J.-C., Wessel, D.L.: Exploration of timbre by analysis and synthesis. In: The psychology of music, 2nd edn. Cognition and Perception, pp. 113–169. Academic Press, London (1999)CrossRefGoogle Scholar
  24. 24.
    Donders, F.C.: On the speed of mental processes. Acta Psychol. 30, 412–431 (1969)CrossRefGoogle Scholar
  25. 25.
    Sternberg, S.: Memory-scanning: mental processes revealed by reaction-time experiments. American Scientist 57(4), 421–457 (1969)Google Scholar
  26. 26.
    Rugg, M.D., Coles, M.G.H.: The ERP and Cognitive Psychology: Conceptual issues. In: Electrophysiology of mind. Event-related brain potentials and cognition. Oxford Psychology, vol. 25, pp. 27–39. Oxford University Press, Oxford (1995)Google Scholar
  27. 27.
    Eggermont, J.J., Ponton, C.W.: The neurophysiology of auditory perception: from single-units to evoked potentials. Audiology & Neuro-Otology 7, 71–99 (2002)CrossRefGoogle Scholar
  28. 28.
    Näätänen, R.: Attention and brain function. Erlbaum, Hillsdale, NJ (1992)Google Scholar
  29. 29.
    Goydke, K.N., Altenmuller, E., Moller, J., Munte, J.: Changes in emotional tones and instrumental timbre are reflected by the mismatch negativity. Cognitive Brain Research 21, 351–359 (2004)CrossRefGoogle Scholar
  30. 30.
    Tervaniemi, M.: Musical sound processing in the human brain: evidence from electric and magnetic recordings. Annals of the New York Academy of Sciences 930, 259–272 (2001)CrossRefGoogle Scholar
  31. 31.
    Tervaniemi, M., Winkler, I., Näätänen, R.: Pre-attentive categorization of sounds by timbre as revealed by event-related potentials. NeuroReport 8, 2571–2574 (1997)CrossRefGoogle Scholar
  32. 32.
    Toiviainen, P., Tervaniemi, M., Louhivuori, J., Saher, M., Huotilainen, M., Näätänen, R.: Timbre similarity: convergence of neural, behavioral, and computational approaches. Music Perception 16, 223–241 (1998)CrossRefGoogle Scholar
  33. 33.
    Caclin, A., Brattico, E., Tervaniemi, M., Näätänen, R., Morlet, D., Giard, M.-H., McAdams, S.: Separate neural processing of timbre dimensions in auditory sensory memory. Journal of Cognitive Neuroscience 18(12), 1959–1972 (2006)CrossRefGoogle Scholar
  34. 34.
    De Baene, W., Vandierendonck, A., Leman, M., Widmann, A., Tervaniemi, M.: Roughness perception in sounds: behavioral and erp evidence. Biological Psychology 67, 319–330 (2004)CrossRefGoogle Scholar
  35. 35.
    Meyer, M., Baumann, S., Jancke, L.: Electrical brain imaging reveals spatio-temporal dynamics of timbre perception in humans. NeuroImage 32, 1510–1523 (2006)CrossRefGoogle Scholar
  36. 36.
    Shahin, A., Bosnyak, D.J., Trainor, L.J., Roberts, L.E.: Enhancement of neuroplastic p2 and n1c auditory evoked potentials in musicians. The Journal of Neuroscience 23(12), 5545–5552 (2003)Google Scholar
  37. 37.
    Shahin, A., Roberts, L.E., Pantev, C., Trainor, L.J., Ross, B.: Modulation of p2 auditory-evoked responses by the spectral complexity of musical sounds. NeuroReport 16(16), 1781–1785 (2005)CrossRefGoogle Scholar
  38. 38.
    Pascual-Marqui, R.D., Michel, C.M., Lehmann, D.: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. International Journal of Psychophysiology 18, 49–65 (1994)CrossRefGoogle Scholar
  39. 39.
    Sutton, S., Braren, M., Zubin, J., John, E.R.: Evoked potential correlates of stimulus uncertainty. Science 150, 1187–1188 (1965)CrossRefGoogle Scholar
  40. 40.
    Donchin, E., Coles, M.G.H.: Is the p300 component a manifestation of context updating? Behavioral and Brain Sciences 11, 357–374 (1988)CrossRefGoogle Scholar
  41. 41.
    Ritter, W., Simson, R., Vaughan, H.G.: Event-related potential correlates of two stages of information processing in physical and semantic discrimination tasks. Psychophysiology 20, 168–179 (1983)CrossRefGoogle Scholar
  42. 42.
    Aramaki, M., Kronland-Martinet, R.: Analysis-synthesis of impact sounds by real-time dynamic filtering. IEEE Transactions on Audio, Speech, and Language Processing 14(2), 695–705 (2006)CrossRefGoogle Scholar
  43. 43.
    Parncutt, R.: Harmony - A Psychoacoustical Approach. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  44. 44.
    Aramaki, M., Baillères, H., Brancheriau, L., Kronland-Martinet, R., Ystad, S.: Sound quality assessment of wood for xylophone bars. Journal of the Acoustical Society of America 121(4), 2407–2420 (2007)CrossRefGoogle Scholar
  45. 45.
    Jasper, H.H.: The ten-twenty electrode system of the international federation. Electroencephalography and Clinical Neurophysiology 10, 371–375 (1958)Google Scholar
  46. 46.
    Delorme, A., Makeig, S.: Eeglab: an open source toolbox for analysis of single-trial eeg dynamics. Journal of Neuroscience Methods 134, 9–21 (2004)CrossRefGoogle Scholar
  47. 47.
    Beauchamp, J.W.: Synthesis by spectral amplitude and “brightness” matching of analyzed musical instrument tones. Journal of the Audio Engineering Society 30(6), 396–406 (1982)Google Scholar
  48. 48.
    Marozeau, J., de Cheveigné, A., McAdams, S., Winsberg, S.: The dependency of timbre on fundamental frequency. Journal of the Acoustical Society of America 114, 2946–2957 (2003)CrossRefGoogle Scholar
  49. 49.
    McAdams, S.: Perspectives on the contribution of timbre to musical structure. Computer Music Journal 23(3), 85–102 (1999)CrossRefGoogle Scholar
  50. 50.
    Plomp, R., Levelt, W.J.M.: Tonal consonance and critical bandwidth. Journal of the Acoustical Society of America 38, 548–560 (1965)CrossRefGoogle Scholar
  51. 51.
    Terhardt, E.: On the perception of periodic sound fluctuations (roughness). Acustica 30(4), 201–213 (1974)Google Scholar
  52. 52.
    Vassilakis, P.N.: Sra: A web-based research tool for spectral and roughness analysis of sound signals. In: Proceedings of the 4th Sound and Music Computing (SMC) Conference, pp. 319–325 (2007)Google Scholar
  53. 53.
    Aramaki, M., Brancheriau, L., Kronland-Martinet, R., Ystad, S.: Computer Music Modeling and Retrieval - Genesis of Meaning of Sound and Music. In: Ystad, S., Kronland-Martinet, R., Jensen, K. (eds.) Perception of impacted materials: sound retrieval and synthesis control perspectives. LNCS, vol. 5493, pp. 134–146. Springer, Heidelberg (2009)Google Scholar
  54. 54.
    Hyde, M.: The n1 response and its applications. Audiology & Neuro-Otology 2, 281–307 (1997)CrossRefGoogle Scholar
  55. 55.
    Gordon, J.W.: The perceptual attack time of musical tones. Journal of Acoustical Society of America 82(1), 88–105 (1987)CrossRefGoogle Scholar
  56. 56.
    Kuriki, S., Kanda, S., Hirata, Y.: Effects of musical experience on different components of meg responses elicited by sequential piano-tones and chords. The Journal of Neuroscience 26(15), 4046–4053 (2006)CrossRefGoogle Scholar
  57. 57.
    Kushnerenko, E., Ceponiene, R., Fellman, V., Huotilainen, M., Winkler, I.: Event-related potential correlates of sound duration: similar pattern from birth to adulthood. NeuroReport 12(17), 3777–3781 (2001)CrossRefGoogle Scholar
  58. 58.
    Walter, W.G., Cooper, R., Aldridge, V.J., McCallum, W.C., Winter, A.L.: Contingent negative variation: an electrical sign of sensorimotor association and expectancy in the human brain. Nature 230, 380–384 (1964)CrossRefGoogle Scholar
  59. 59.
    King, J., Kutas, M.: Who did what and when? using word- and clause-level erps to monitor working memory usage in reading. Journal of Cognitive Neuroscience 7(3), 376–395 (1995)CrossRefGoogle Scholar
  60. 60.
    Alain, C., Schuler, B.M., McDonald, K.L.: Neural activity associated with distinguishing concurrent auditory objects. Journal of Acoustical Society of America 111(2), 990–995 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mitsuko Aramaki
    • 1
    • 2
  • Mireille Besson
    • 1
    • 2
  • Richard Kronland-Martinet
    • 3
  • Sølvi Ystad
    • 3
  1. 1.CNRS - Institut de Neurosciences Cognitives de la MéditerranéeMarseille Cedex 20France
  2. 2.Aix-Marseille - UniversitéMarseille Cedex 07France
  3. 3.CNRS - Laboratoire de Mécanique et d’AcoustiqueMarseille Cedex 20France

Personalised recommendations