Skip to main content

Discriminative Shape Alignment

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5636))

Abstract

The alignment of shape data to a common mean before its subsequent processing is an ubiquitous step within the area shape analysis. Current approaches to shape analysis or, as more specifically considered in this work, shape classification perform the alignment in a fully unsupervised way, not taking into account that eventually the shapes are to be assigned to two or more different classes. This work introduces a discriminative variation to well-known Procrustes alignment and demonstrates its benefit over this classical method in shape classification tasks. The focus is on two-dimensional shapes from a two-class recognition problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bookstein, F.: Shape and the information in medical images: A decade of the morphometric synthesis. Computer Vision and Image Understanding 66(2), 97–118 (1997)

    Article  Google Scholar 

  2. DeQuardo, J., Bookstein, F., Green, W., Brundberg, J., Tandon, R.: Spatial relationships of neuroanatomic landmarks in schizophrenia. Psychiatry Research: Neuroimaging 67(1), 81–95 (1996)

    Article  Google Scholar 

  3. Hammond, P., Hutton, T., Allanson, J., Campbell, L., Hennekam, R., Holden, S., Patton, M., Shaw, A., Temple, I., Trotter, M., Murphy, K., Winter, R.: 3D analysis of facial morphology. American Journal of Medical Genetics 126(4), 339–348 (2004)

    Article  Google Scholar 

  4. Nicholson, E., Harvati, K.: Quantitative analysis of human mandibular shape using three-dimensional geometric morphometrics. American Journal of Physical Anthropology 131(3), 368 (2006)

    Article  Google Scholar 

  5. Wang, L., Tan, T., Hu, W., Ning, H.: Automatic gait recognition based on statistical shape analysis. IEEE Transactions on Image Processing 12(9), 1120–1131 (2003)

    Article  MathSciNet  Google Scholar 

  6. de Bruijne, M., Pettersen, P.: Supervised shape analysis for risk assessment in osteoporosis. In: Fifth IEEE International Symposium on Biomedical Imaging, pp. 1581–1584 (2008)

    Google Scholar 

  7. Dryden, I., Mardia, K.: Statistical shape analysis. John Wiley & Sons, New York (1998)

    MATH  Google Scholar 

  8. Goodall, C.: Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society B 53, 285–339 (1991)

    MathSciNet  MATH  Google Scholar 

  9. Kendall, D.: Shape manifolds, Procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society 16(2), 81 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Golland, P., Grimson, W., Shenton, M., Kikinis, R.: Detection and analysis of statistical differences in anatomical shape. Medical Image Analysis 9, 69–86 (2005)

    Article  Google Scholar 

  11. Davatzikos, C., Tao, X., Shen, D.: Applications of wavelets in morphometric analysis of medical images. In: Unser, M., Aldroubi, A., Laine, A. (eds.) Wavelets: Applications in Signal and Image Processing X, SPIE Conference, vol. 5207, pp. 435–444 (2003)

    Google Scholar 

  12. Davies, R., Twining, C., Allen, P., Cootes, T., Taylor, C.: Shape discrimination in the hippocampus using an MDL model. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 38–50. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Loog, M.: Localized maximum entropy shape modelling. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 619–629. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Devijver, P., Kittler, J.: Pattern Recognition: A Statistical Approach. Prentice-Hall, London (1982)

    MATH  Google Scholar 

  15. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, London (1990)

    MATH  Google Scholar 

  16. Hastie, T., Tibshirani, R., Friedman, J.: Elements of statistical learning: data mining, inference and prediction. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  17. Hastie, T., Buja, A., Tibshirani, R.: Penalized discriminant analysis. Annals of statistics 23, 73–102 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ripley, B.: Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  19. Bagger, Y., Tankó, L., Alexandersen, P., Hansen, H., Qin, G., Christiansen, C.: The long-term predictive value of bone mineral density measurements for fracture risk is independent of the site of measurement and the age at diagnosis: results from the prospective epidemiological risk factors study. Osteoporosis International 17, 471–477 (2006)

    Article  Google Scholar 

  20. Mansilla, E., Ho, T.: On classifier domains of competence. In: Proceedings of the 17th International Conference on Pattern Recognition, pp. 136–139 (2004)

    Google Scholar 

  21. Schulerud, H.: Bias of error rates in linear discriminant analysis caused by feature selection and sample size. In: Proceedings of the 15th International Conference on Pattern Recognition, vol. 2 (2000)

    Google Scholar 

  22. Loog, M., Duin, R.: Linear dimensionality reduction via a heteroscedastic extension of LDA: the Chernoff criterion. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(6), 732–739 (2004)

    Article  Google Scholar 

  23. Loog, M., van Ginneken, B., Duin, R.: Dimensionality reduction of image features using the canonical contextual correlation projection. Pattern Recognition 38(12), 2409–2418 (2005)

    Article  Google Scholar 

  24. Van der Maaten, L., Postma, E., Van den Herik, H.: Dimensionality reduction: A comparative review (preprint, 2007)

    Google Scholar 

  25. Dam, E., Koch, M., Lillholm, M.: Quaternions, interpolation and animation. Technical Report DIKU-98/5, Department of Computer Science, University of Copenhagen (1998)

    Google Scholar 

  26. Gold, S., Rangarajan, A., Mjolsness, E.: Learning with preknowledge: clustering with point and graph matching distance measures. Neural Computation 8(4), 787–804 (1996)

    Article  Google Scholar 

  27. Harshman, R.: Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multi-modal factor analysis. UCLA working papers in phonetics 16(1-84), 246 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Loog, M., de Bruijne, M. (2009). Discriminative Shape Alignment. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds) Information Processing in Medical Imaging. IPMI 2009. Lecture Notes in Computer Science, vol 5636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02498-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02498-6_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02497-9

  • Online ISBN: 978-3-642-02498-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics