Skip to main content

Exploratory fMRI Analysis without Spatial Normalization

  • Conference paper
Information Processing in Medical Imaging (IPMI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5636))

Included in the following conference series:

Abstract

We present an exploratory method for simultaneous parcellation of multisubject fMRI data into functionally coherent areas. The method is based on a solely functional representation of the fMRI data and a hierarchical probabilistic model that accounts for both inter-subject and intra-subject forms of variability in fMRI response. We employ a Variational Bayes approximation to fit the model to the data. The resulting algorithm finds a functional parcellation of the individual brains along with a set of population-level clusters, establishing correspondence between these two levels. The model eliminates the need for spatial normalization while still enabling us to fuse data from several subjects. We demonstrate the application of our method on a visual fMRI study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brett, M., et al.: The problem of functional localization in the human brain. Nat. Rev. Neurosci. 3, 243–249 (2002)

    Article  Google Scholar 

  2. Friston, K.J., et al. (eds.): Statistical Parametric Mapping. Academic Press, London (2007)

    Google Scholar 

  3. Gee, J.C., et al.: Effect of spatial normalization on analysis of functional data. In: Proc. SPIE Med. Imaging, vol. 3034, pp. 550–560 (1997)

    Google Scholar 

  4. Thirion, B., et al.: Dealing with the shortcomings of spatial normalization: multi-subject parcellation of fMRI datasets. Hum. Brain Mapp. 27, 678–693 (2006)

    Article  Google Scholar 

  5. Thirion, B., et al.: Analysis of a large fMRI cohort: statistical and methodological issues for group analyses. NeuroImage 35, 105–120 (2007)

    Article  Google Scholar 

  6. Thirion, B., et al.: Structural analysis of fMRI data revisited: improving the sensitivity and reliability of fMRI group studies. TMI 26, 1256–1269 (2007)

    Google Scholar 

  7. Golland, P., et al.: Detection of spatial activation patterns as unsupervised segmentation of fMRI data. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 110–118. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. McKeown, J.M., et al.: Analysis of fMRI data by blind separation into independent spatial components. Hum. Brain Mapp. 10, 160–178 (1998)

    Article  Google Scholar 

  9. Beckmann, C.F., Smith, S.M.: Tensorial extensions of independent component analysis for group fMRI data analysis. NeuroImage 25(1), 294–311 (2005)

    Article  Google Scholar 

  10. Goutte, C., et al.: On clustering fMRI time series. NeuroImage 9, 298–310 (1999)

    Article  Google Scholar 

  11. Thirion, B., Faugeras, O.: Feature detection in fMRI data: the information bottleneck approach. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 83–91. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Lashkari, D., et al.: Discovering structure in the space of activation profiles in fMRI. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 1015–1024. Springer, Heidelberg (2008)

    Google Scholar 

  13. Penny, W.D., Holmes, A.: Random effects analysis. In: Frackowiak, R.S.J., Friston, K.J., Frith, C.D. (eds.) Human brain function II. Elsevier, Oxford (2003)

    Google Scholar 

  14. Mardia, K.V.: Statistics of directional data. J. R. Statist. Soc. Series B 37, 349–393 (1975)

    MathSciNet  MATH  Google Scholar 

  15. Jordan, M.I., et al.: An introduction to variational methods for graphical models. Mach. Learn. 37, 183–233 (1999)

    Article  MATH  Google Scholar 

  16. Blei, D.M., et al.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  17. Banerjee, A., et al.: Clustering on the unit hypersphere using von Mises-Fisher distribution. J. Mach. Learn. Res. 6, 1345–1382 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Kanwisher, N.G.: The ventral visual object pathway in humans: evidence from fMRI. In: Chalupa, L., Werner, J. (eds.) The Visual Neurosciences. MIT Press, Cambridge (2003)

    Google Scholar 

  19. http://surfer.nmr.mgh.harvard.edu/fswiki/FsFast

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lashkari, D., Golland, P. (2009). Exploratory fMRI Analysis without Spatial Normalization. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds) Information Processing in Medical Imaging. IPMI 2009. Lecture Notes in Computer Science, vol 5636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02498-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02498-6_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02497-9

  • Online ISBN: 978-3-642-02498-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics