Skip to main content

Adaptive Kernels for Multi-fiber Reconstruction

  • Conference paper
Information Processing in Medical Imaging (IPMI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5636))

Included in the following conference series:

Abstract

In this paper we present a novel method for multi-fiber reconstruction given a diffusion-weighted MRI dataset. There are several existing methods that employ various spherical deconvolution kernels for achieving this task. However the kernels in all of the existing methods rely on certain assumptions regarding the properties of the underlying fibers, which introduce inaccuracies and unnatural limitations in them. Our model is a non trivial generalization of the spherical deconvolution model, which unlike the existing methods does not make use of a fix-shaped kernel. Instead, the shape of the kernel is estimated simultaneously with the rest of the unknown parameters by employing a general adaptive model that can theoretically approximate any spherical deconvolution kernel. The performance of our model is demonstrated using simulated and real diffusion-weighed MR datasets and compared quantitatively with several existing techniques in literature. The results obtained indicate that our model has superior performance that is close to the theoretic limit of the best possible achievable result.

This research was supported by the NIH grant EB007082 to Baba Vemuri and funding for data acquisition was provided by the NIH grant P41-RR16105 to Stephen Blackband. Authors thank Drs. Timothy M. Shepherd and Evren Özarslan for data acquisition. Implementation is available at http://www.cise.ufl.edu/research/cvgmi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. LeBihan, D., et al.: MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders. Radiology 161, 401–407 (1986)

    Article  Google Scholar 

  2. Basser, P.J., et al.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B 103, 247–254 (1994)

    Article  Google Scholar 

  3. Frank, L.: Characterization of Anisotropy in High Angular Resolution Diffusion Weighted MRI. Magn. Reson. Med. 47(6), 1083–1099 (2002)

    Article  Google Scholar 

  4. Alexander, D.C., et al.: Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain. MRM 48(2), 331–340 (2002)

    Article  Google Scholar 

  5. von dem Hagen, E.A.H., Henkelman, R.M.: Orientational diffusion reflects fiber structure within a voxel. Magn. Reson. Med. 48(3), 454–459 (2002)

    Article  Google Scholar 

  6. Tuch, D.S., et al.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. MRM 48(4), 577–582 (2002)

    Article  Google Scholar 

  7. Barmpoutis, A., et al.: Symmetric positive 4th order tensors and their estimation from diffusion weighted MRI. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 308–319. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Özarslan, E., et al.: Resolution of complex tissue microarchitecture using the diffusion orientation transform. NeuroImage 36(3), 1086–1103 (2006)

    Article  Google Scholar 

  9. Zhan, W., Yang, Y.: How accurately can the diffusion profiles indicate multiple fiber orientations? a study on general fiber crossings in diffusion MRI. Journal of Magnetic Resonance 183(2), 193–202 (2006)

    Article  Google Scholar 

  10. Wedeen, V.J., et al.: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. MRM 54(6), 1377–1386 (2005)

    Article  Google Scholar 

  11. Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52(6), 1358–1372 (2004)

    Article  Google Scholar 

  12. Anderson, A.W.: Measurement of fiber orientation distributions using high angular resolution diffusion imaging. MRM 54(5), 1194–1206 (2005)

    Article  Google Scholar 

  13. Hess, C.P., et al.: Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis. MRM 56(1), 104–117 (2006)

    Article  Google Scholar 

  14. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast and robust analytical q-ball imaging. MRM 58, 497–510 (2007)

    Article  Google Scholar 

  15. Behrens, T., et al.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50(2), 1077–1088 (2003)

    Article  Google Scholar 

  16. Assaf, Y., et al.: New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. MRM 52(5), 965–978 (2004)

    Article  Google Scholar 

  17. Hosey, T.P., et al.: Inference of multiple fiber orientations in high angular resolution diffusion imaging. MRM 54(6), 1480–1489 (2005)

    Article  Google Scholar 

  18. Behrens, T., et al.: Probabilistic tractography with multiple fibre orientations: What can we gain? NeuroImage 34, 144–155 (2007)

    Article  Google Scholar 

  19. Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage 23(3), 1176–1185 (2004)

    Article  Google Scholar 

  20. Jian, B., et al.: A novel tensor distribution model for the diffusion weighted MR signal. NeuroImage 37(1), 164–176 (2007)

    Article  Google Scholar 

  21. Ramirez-Manzanares, A., et al.: Diffusion basis functions decomposition for estimating white matter intravoxel fiber geometry. IEEE Trans. Med. Imaging 26(8), 1091–1102 (2007)

    Article  Google Scholar 

  22. Kumar, R., et al.: Multi-fiber reconstruction from DW-MRI using a continuous mixture of von mises-fisher distributions. In: MMBIA (2008)

    Google Scholar 

  23. Rathi, Y., Michailovich, O., Bouix, S., Shenton, M.: Directional functions for orientation distribution estimation. In: ISBI, pp. 927–930 (2008)

    Google Scholar 

  24. Jian, B., Vemuri, B.C.: A unified computational framework for deconvolution to reconstruct multiple fibers from diffusion weighted MRI. IEEE Trans. Med. Imaging 26(11), 1464–1471 (2007)

    Article  Google Scholar 

  25. Söderman, O., Jönsson, B.: Restricted diffusion in cylindirical geometry. J. Magn. Reson. B 117(1), 94–97 (1995)

    Article  Google Scholar 

  26. Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems. Prentice-Hall, Englewood Cliffs (1974)

    MATH  Google Scholar 

  27. Shepherd, T.M., et al.: Structural insights from high-resolution diffusion tensor imaging and tractography of the isolated rat hippocampus. NeuroImage 32(4), 1499–1509 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barmpoutis, A., Jian, B., Vemuri, B.C. (2009). Adaptive Kernels for Multi-fiber Reconstruction. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds) Information Processing in Medical Imaging. IPMI 2009. Lecture Notes in Computer Science, vol 5636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02498-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02498-6_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02497-9

  • Online ISBN: 978-3-642-02498-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics