Skip to main content

Improving Training in the Vicinity of Temporary Minima

  • Conference paper
  • 2107 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5517))

Abstract

An important problem in learning using gradient descent algorithms (such as backprop) is the slowdown incurred by temporary minima (TM). We consider this problem for an artificial neural network trained to solve the XOR problem. The network is transformed into the equivalent all permutations fuzzy rule-base which provides a symbolic representation of the knowledge embedded in the network. We develop a mathematical model for the evolution of the fuzzy rule-base parameters during learning in the vicinity of TM. We show that the rule-base becomes singular and tends to remain singular in the vicinity of TM.

Our analysis suggests a simple remedy for overcoming the slowdown in the learning process incurred by TM. This is based on slightly perturbing the values of the training examples, so that they are no longer symmetric. Simulations demonstrate the usefulness of this approach.

Research supported in part by research grants from the Israel Science Foundation (ISF) and the Israeli Ministry of Science and Technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, R., Diederich, J., Tickle, A.B.: Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based Systems 8, 373–389 (1995)

    Article  MATH  Google Scholar 

  2. Cloete, I., Zurada, J.M. (eds.): Knowledge-Based Neurocomputing. MIT Press, Cambridge (2000)

    Google Scholar 

  3. Jacobsson, H.: Rule extraction from recurrent neural networks: A taxonomy and review. Neural Computation 17, 1223–1263 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Tickle, A.B., Andrews, R., Golea, M., Diederich, J.: The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks. IEEE Trans. Neural Networks 9, 1057–1068 (1998)

    Article  Google Scholar 

  5. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice-Hall, Englewood Cliffs (1997)

    Google Scholar 

  6. Li, C., Cheng, K.H.: Recurrent neuro-fuzzy hybrid-learning approach to accurate system modeling. Fuzzy Sets and Systems 158, 194–212 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kolman, E., Margaliot, M.: Are artificial neural networks white boxes? IEEE Trans. Neural Networks 16, 844–852 (2005)

    Article  Google Scholar 

  8. Kolman, E., Margaliot, M.: Knowledge-Based Neurocomputing: A Fuzzy Logic Approach. Studies in Fuzziness and Soft Computing, vol. 234. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

  9. Ampazis, N., Perantonis, S.J., Taylor, J.G.: Dynamics of multilayer networks in the vicinity of temporary minima. Neural Networks 12, 43–58 (1999)

    Article  Google Scholar 

  10. Annema, A.J., Hoen, K., Wallinga, H.: Learning behavior and temporary minima of two-layer neural networks. Neural Networks 7, 1387–1404 (1994)

    Article  Google Scholar 

  11. Hamey, L.G.C.: XOR has no local minima: A case study in neural network error surface analysis. Neural Networks 11, 669–681 (1998)

    Article  Google Scholar 

  12. Lee, O., Oh, S.H., Kim, M.W.: An analysis of premature saturation in back propagation learning. Neural Networks 6, 719–728 (1993)

    Article  Google Scholar 

  13. Amari, S., Park, H., Ozeki, T.: Singularities affect dynamics of learning in neuromanifolds. Neural Computation 18, 1007–1065 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sousa, J.W.C., Kaymak, U.: Fuzzy Decision Making in Modeling and Control. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  15. Roth, I., Margaliot, M.: Analysis of learning near temporary minima using the all permutations fuzzy rule-base (submitted for publication) (2009), http://www.eng.tau.ac.il/~michaelm

  16. Wang, X., Tang, Z., Tamura, H., Ishii, M., Sun, W.: An improved backpropagation algorithm to avoid the local minima problem. Neurocomputing 56, 455–460 (2004)

    Article  Google Scholar 

  17. Bishop, C.M.: Training with noise is equivalent to Tikhonov regularization. Neural Computation 7(1), 108–116 (1995)

    Article  Google Scholar 

  18. Wang, C., Principe, J.: Training neural networks with additive noise in the desired signal. IEEE Trans. Neural Networks 10, 1511–1517 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roth, I., Margaliot, M. (2009). Improving Training in the Vicinity of Temporary Minima. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds) Bio-Inspired Systems: Computational and Ambient Intelligence. IWANN 2009. Lecture Notes in Computer Science, vol 5517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02478-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02478-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02477-1

  • Online ISBN: 978-3-642-02478-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics