Skip to main content

Lower Bounds for Approximation of Some Classes of Lebesgue Measurable Functions by Sigmoidal Neural Networks

  • Conference paper
Bio-Inspired Systems: Computational and Ambient Intelligence (IWANN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5517))

Included in the following conference series:

Abstract

We propose a general method for estimating the distance between a compact subspace K of the space L 1([0,1]s) of Lebesgue measurable functions defined on the hypercube [0,1]s, and the class of functions computed by artificial neural networks using a single hidden layer, each unit evaluating a sigmoidal activation function. Our lower bounds are stated in terms of an invariant that measures the oscillations of functions of the space K around the origin. As an application we estimate the minimal number of neurons required to approximate bounded functions satisfying uniform Lipschitz conditions of order α with accuracy ε.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barron, R.: Universal approximation bounds for superposition of a sigmoidal function. IEEE Trans. Information Theory 39, 930–945 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barron, A., Barron, A.L.: Statistical learning networks: a unified view. In: Symp. on the Interface: Statistics and Computing Science, Reston, Virginia (1988)

    Google Scholar 

  3. Broomhead, D.S., Lowe, D.: Multivariable functional interpolation and adaptative networks. Complex Systems 2, 321–355 (1988)

    MathSciNet  MATH  Google Scholar 

  4. Cybenko, G.: Approximation by superposition of sigmoidal functions. Mathematics of Control, signal and Systems 2, 303–314 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Girosi, F., Jones, M., Poggio, T.: Regularization theory and neuronal networks arquitectures. Neural Computation 7, 219–269 (1995)

    Article  Google Scholar 

  6. Mhaskar, H.N.: Neural networks for optimal approximation of smooth and analytic functions. Neural Computation 8, 164–167 (1996)

    Article  Google Scholar 

  7. Moody, J., Darken, C.: Fast learning in networks of locally tuned processing units. Neural Computation 1(2), 282–294 (1989)

    Article  Google Scholar 

  8. Park, J., Sandberg, I.w.: Universal approximation using radial basis function networks. Neural Computation 3(2), 246–257 (1991)

    Article  Google Scholar 

  9. Poggio, T., Girosi, F., Jones, M.: From regularization to radial tensor and additive splines. In: Proc. Neural Networks for signal Processing, vol. III, pp. 3–10. IEEE, New York (1993)

    Google Scholar 

  10. Leshno, M., Lin, V., Pinkus, A., Schocken, S.: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neuronal Networks 2, 359–366 (1989)

    Article  Google Scholar 

  11. Hornink, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neuronal Networks 2, 359–366 (1989)

    Article  Google Scholar 

  12. Devore, R., Howard, R., Micchelli, C.A.: Optimal non-linear approximation. Manuscripta Mathematica 63, 469–478 (1989)

    Article  MathSciNet  Google Scholar 

  13. Gabrielov, A.N., Vorobjov, N.: Complexity of computations with Pfaffian and Noetherian functions. Normal Forms, Bifurcations and Finiteness Problems in Differential Equations. Kluwer, Dordrecht (2004)

    Google Scholar 

  14. Khovanskii, A.: On a class of systems of transcendental equations. Soviet Math. Dokl. 22, 762–765 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Montaña, J.L., Borges, C.E. (2009). Lower Bounds for Approximation of Some Classes of Lebesgue Measurable Functions by Sigmoidal Neural Networks. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds) Bio-Inspired Systems: Computational and Ambient Intelligence. IWANN 2009. Lecture Notes in Computer Science, vol 5517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02478-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02478-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02477-1

  • Online ISBN: 978-3-642-02478-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics