Advertisement

OASIS: An Overlay Abstraction for Re-architecting Large Scale Internet Group Services

  • Matthias Wählisch
  • Thomas C. Schmidt
  • Georg Wittenburg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5630)

Abstract

There is an increasing economic desire driven by widespread applications like IPTV or conferencing that a next generation Internet will grant transparent group communication service to all its stationary and mobile users. In this paper, we present a generic approach to inter-domain multicast, which is guided by an abstract, DHT-inspired overlay, but may operate on a future Internet architecture. It is based on the assumptions of a globally available end-to-end unicast routing between resolvable locators, taken from a name space that allows for aggregation. Our protocol design accounts for this aggregation, leading to forward-path forwarding along bidirectional shared distribution trees in prefix space. The scheme facilitates multipath multicast transport, offers fault-tolerant routing, arbitrary redundancy for packets and paths and remains mobility agnostic. We present OASIS, its application to IPv6, and evaluate signaling costs analytically based on its k-ary tree structure.

Keywords

Prefix-directed multicast bidirectional shared tree Internet architecture IPv6 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguilar, L.: Datagram Routing for Internet Multicasting. In: Proceedings of SIGCOMM 1984, pp. 58–63. ACM Press, New York (1984)Google Scholar
  2. 2.
    Deering, S.E.: Host Extensions for IP Multicasting. RFC 1112, IETF (1989)Google Scholar
  3. 3.
    Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.: SCRIBE: A large-scale and decentralized application-level multicast infrastructure. IEEE Journal on Selected Areas in Communications 20(8), 100–110 (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Zhuang, S.Q., Zhao, B.Y., Joseph, A.D., Katz, R.H., Kubiatowicz, J.D.: Bayeux: An Architecture for Scalable and Fault-tolerant Wide-Area Data Dissemination. In: Proceedings of NOSSDAV 2001, pp. 11–20 (June 2001)Google Scholar
  5. 5.
    Ratnasamy, S., Handley, M., Karp, R.M., Shenker, S.: Application-Level Multicast Using Content-Addressable Networks. In: Crowcroft, J., Hofmann, M. (eds.) NGC 2001. LNCS, vol. 2233, pp. 14–29. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Thaler, D.: Evolution of the IP Model. Internet Draft – work in progress 01, IETF (July 2008)Google Scholar
  7. 7.
    Saltzer, J.H., Reed, D.P., Clark, D.D.: End-to-End Arguments in System Design. ACM Trans. Comput. Syst. 2(4), 277–288 (1984)CrossRefGoogle Scholar
  8. 8.
    Clark, D.: The Design Philosophy of the DARPA Internet Protocols. In: Proceedings of SIGCOMM 1988, pp. 106–114. ACM, New York (1988)Google Scholar
  9. 9.
    Carpenter, B.: Architectural Principles of the Internet. RFC 1958, IETF (1996)Google Scholar
  10. 10.
    Saltzer, J.: On the Naming and Binding of Network Destinations. RFC 1498, IETF (August 1993)Google Scholar
  11. 11.
    Braden, R., Clark, D., Shenker, S., Wroclawski, J.: Developing a Next-Generation Internet Architecture. White paper (July 2000)Google Scholar
  12. 12.
    Crowcroft, J., Hand, S., Mortier, R., Roscoe, T., Warfield, A.: Plutarch: an Argument for Network Pluralism. In: Proc. of the ACM SIGCOMM workshop on Future directions in network architecture, pp. 258–266. ACM Press, New York (2003)CrossRefGoogle Scholar
  13. 13.
    Schmid, S., Eggert, L., Brunner, M., Quittek, J.: TurfNet: An Architecture for Dynamically Composable Networks. In: Smirnov, M. (ed.) WAC 2004. LNCS, vol. 3457, pp. 94–114. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Plaxton, C., Rajaraman, R., Richa, A.: Accessing Nearby Copies of Replicated Objects in a Distributed Environment. In: Proc. of 9th ACM Sympos. on parallel Algor. and Arch. (SPAA), pp. 311–330. ACM Press, New York (1997)Google Scholar
  15. 15.
    Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-to-peer lookup service for internet applications. In: Proceedings of SIGCOMM 2001, pp. 149–160. ACM Press, New York (2001)Google Scholar
  16. 16.
    Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A Scalable Content-Addressable Network. In: Proc. of SIGCOMM 2001, pp. 161–172. ACM, New York (2001)Google Scholar
  18. 18.
    Wischik, D., Handley, M., Braun, M.B.: The Resource Pooling Principle. SIGCOMM Comput. Commun. Rev. 38(5), 47–52 (2008)CrossRefGoogle Scholar
  19. 19.
    Wählisch, M.: Scalable Adaptive Group Communication on Bi-directional Shared Prefix Trees. Technical Report TR-B-08-14, Freie Universität Berlin, Department of Mathematics and Computer Science, Berlin (September 2008)Google Scholar
  20. 20.
    Labovitz, C., Ahuja, A., Bose, A., Jahanian, F.: Delayed Internet Routing Convergence. In: Proceedings of SIGCOMM 2000, pp. 175–187. ACM, New York (2000)Google Scholar
  21. 21.
    Ahlswede, R., Cai, N., Li, S.Y.R., Yeung, R.W.: Network Information Flow. IEEE Transactions on Information Theory 46(4), 1204–1216 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Schmidt, T.C., Wählisch, M., Fairhurst, G.: Multicast Mobility in MIPv6: Problem Statement and Brief Survey. IRTF Internet Draft – work in progress 07 (2009)Google Scholar
  23. 23.
    Handley, M., Kouvelas, I., Speakman, T., Vicisano, L.: Bidirectional Protocol Independent Multicast (BIDIR-PIM). RFC 5015, IETF (October 2007)Google Scholar
  24. 24.
    Hinden, R.M., O’Dell, M., Deering, S.E.: An IPv6 Aggregatable Global Unicast Address Format. RFC 2374, IETF (July 1998)Google Scholar
  25. 25.
    Savola, P., Haberman, B.: Embedding the Rendezvous Point (RP) Address in an IPv6 Multicast Address. RFC 3956, IETF (November 2004)Google Scholar
  26. 26.
    APNIC, ARIN, RIPE NCC: IPv6 Address Allocation and Assignment Policy. RIPE Document ripe-421, RIPE (November 2007)Google Scholar
  27. 27.
    IAB, IESG: IAB/IESG Recommendations on IPv6 Address Allocations to Sites. RFC 3177, IETF (September 2001)Google Scholar
  28. 28.
    Martinez, J.P.: Provider Independent (PI) IPv6 Assignments for End User Organisations. RIPE Policy Proposal 2006-01, RIPE (May 2007)Google Scholar
  29. 29.
    APNIC: IPv6 Address Allocation and Assignment Policy. APNIC Document APNIC-089, APNIC (August 2008)Google Scholar
  30. 30.
    Farinacci, D., Fuller, V., Oran, D., Meyer, D.: Locator/ID Separation Protocol (LISP). Internet Draft – work in progress 09, IETF (October 2008)Google Scholar
  31. 31.
    Vogt, C.: Six/One: A Solution for Routing and Addressing in IPv6. Internet Draft – work in progress (expired) 01, IETF (November 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Matthias Wählisch
    • 1
    • 2
  • Thomas C. Schmidt
    • 2
  • Georg Wittenburg
    • 1
  1. 1.Institut für InformatikFreie Universität BerlinBerlinGermany
  2. 2.Department InformatikHAW HamburgHamburgGermany

Personalised recommendations