OASIS: An Overlay Abstraction for Re-architecting Large Scale Internet Group Services

  • Matthias Wählisch
  • Thomas C. Schmidt
  • Georg Wittenburg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5630)


There is an increasing economic desire driven by widespread applications like IPTV or conferencing that a next generation Internet will grant transparent group communication service to all its stationary and mobile users. In this paper, we present a generic approach to inter-domain multicast, which is guided by an abstract, DHT-inspired overlay, but may operate on a future Internet architecture. It is based on the assumptions of a globally available end-to-end unicast routing between resolvable locators, taken from a name space that allows for aggregation. Our protocol design accounts for this aggregation, leading to forward-path forwarding along bidirectional shared distribution trees in prefix space. The scheme facilitates multipath multicast transport, offers fault-tolerant routing, arbitrary redundancy for packets and paths and remains mobility agnostic. We present OASIS, its application to IPv6, and evaluate signaling costs analytically based on its k-ary tree structure.


Prefix-directed multicast bidirectional shared tree Internet architecture IPv6 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aguilar, L.: Datagram Routing for Internet Multicasting. In: Proceedings of SIGCOMM 1984, pp. 58–63. ACM Press, New York (1984)Google Scholar
  2. 2.
    Deering, S.E.: Host Extensions for IP Multicasting. RFC 1112, IETF (1989)Google Scholar
  3. 3.
    Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.: SCRIBE: A large-scale and decentralized application-level multicast infrastructure. IEEE Journal on Selected Areas in Communications 20(8), 100–110 (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Zhuang, S.Q., Zhao, B.Y., Joseph, A.D., Katz, R.H., Kubiatowicz, J.D.: Bayeux: An Architecture for Scalable and Fault-tolerant Wide-Area Data Dissemination. In: Proceedings of NOSSDAV 2001, pp. 11–20 (June 2001)Google Scholar
  5. 5.
    Ratnasamy, S., Handley, M., Karp, R.M., Shenker, S.: Application-Level Multicast Using Content-Addressable Networks. In: Crowcroft, J., Hofmann, M. (eds.) NGC 2001. LNCS, vol. 2233, pp. 14–29. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Thaler, D.: Evolution of the IP Model. Internet Draft – work in progress 01, IETF (July 2008)Google Scholar
  7. 7.
    Saltzer, J.H., Reed, D.P., Clark, D.D.: End-to-End Arguments in System Design. ACM Trans. Comput. Syst. 2(4), 277–288 (1984)CrossRefGoogle Scholar
  8. 8.
    Clark, D.: The Design Philosophy of the DARPA Internet Protocols. In: Proceedings of SIGCOMM 1988, pp. 106–114. ACM, New York (1988)Google Scholar
  9. 9.
    Carpenter, B.: Architectural Principles of the Internet. RFC 1958, IETF (1996)Google Scholar
  10. 10.
    Saltzer, J.: On the Naming and Binding of Network Destinations. RFC 1498, IETF (August 1993)Google Scholar
  11. 11.
    Braden, R., Clark, D., Shenker, S., Wroclawski, J.: Developing a Next-Generation Internet Architecture. White paper (July 2000)Google Scholar
  12. 12.
    Crowcroft, J., Hand, S., Mortier, R., Roscoe, T., Warfield, A.: Plutarch: an Argument for Network Pluralism. In: Proc. of the ACM SIGCOMM workshop on Future directions in network architecture, pp. 258–266. ACM Press, New York (2003)CrossRefGoogle Scholar
  13. 13.
    Schmid, S., Eggert, L., Brunner, M., Quittek, J.: TurfNet: An Architecture for Dynamically Composable Networks. In: Smirnov, M. (ed.) WAC 2004. LNCS, vol. 3457, pp. 94–114. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Plaxton, C., Rajaraman, R., Richa, A.: Accessing Nearby Copies of Replicated Objects in a Distributed Environment. In: Proc. of 9th ACM Sympos. on parallel Algor. and Arch. (SPAA), pp. 311–330. ACM Press, New York (1997)Google Scholar
  15. 15.
    Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-to-peer lookup service for internet applications. In: Proceedings of SIGCOMM 2001, pp. 149–160. ACM Press, New York (2001)Google Scholar
  16. 16.
    Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A Scalable Content-Addressable Network. In: Proc. of SIGCOMM 2001, pp. 161–172. ACM, New York (2001)Google Scholar
  18. 18.
    Wischik, D., Handley, M., Braun, M.B.: The Resource Pooling Principle. SIGCOMM Comput. Commun. Rev. 38(5), 47–52 (2008)CrossRefGoogle Scholar
  19. 19.
    Wählisch, M.: Scalable Adaptive Group Communication on Bi-directional Shared Prefix Trees. Technical Report TR-B-08-14, Freie Universität Berlin, Department of Mathematics and Computer Science, Berlin (September 2008)Google Scholar
  20. 20.
    Labovitz, C., Ahuja, A., Bose, A., Jahanian, F.: Delayed Internet Routing Convergence. In: Proceedings of SIGCOMM 2000, pp. 175–187. ACM, New York (2000)Google Scholar
  21. 21.
    Ahlswede, R., Cai, N., Li, S.Y.R., Yeung, R.W.: Network Information Flow. IEEE Transactions on Information Theory 46(4), 1204–1216 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Schmidt, T.C., Wählisch, M., Fairhurst, G.: Multicast Mobility in MIPv6: Problem Statement and Brief Survey. IRTF Internet Draft – work in progress 07 (2009)Google Scholar
  23. 23.
    Handley, M., Kouvelas, I., Speakman, T., Vicisano, L.: Bidirectional Protocol Independent Multicast (BIDIR-PIM). RFC 5015, IETF (October 2007)Google Scholar
  24. 24.
    Hinden, R.M., O’Dell, M., Deering, S.E.: An IPv6 Aggregatable Global Unicast Address Format. RFC 2374, IETF (July 1998)Google Scholar
  25. 25.
    Savola, P., Haberman, B.: Embedding the Rendezvous Point (RP) Address in an IPv6 Multicast Address. RFC 3956, IETF (November 2004)Google Scholar
  26. 26.
    APNIC, ARIN, RIPE NCC: IPv6 Address Allocation and Assignment Policy. RIPE Document ripe-421, RIPE (November 2007)Google Scholar
  27. 27.
    IAB, IESG: IAB/IESG Recommendations on IPv6 Address Allocations to Sites. RFC 3177, IETF (September 2001)Google Scholar
  28. 28.
    Martinez, J.P.: Provider Independent (PI) IPv6 Assignments for End User Organisations. RIPE Policy Proposal 2006-01, RIPE (May 2007)Google Scholar
  29. 29.
    APNIC: IPv6 Address Allocation and Assignment Policy. APNIC Document APNIC-089, APNIC (August 2008)Google Scholar
  30. 30.
    Farinacci, D., Fuller, V., Oran, D., Meyer, D.: Locator/ID Separation Protocol (LISP). Internet Draft – work in progress 09, IETF (October 2008)Google Scholar
  31. 31.
    Vogt, C.: Six/One: A Solution for Routing and Addressing in IPv6. Internet Draft – work in progress (expired) 01, IETF (November 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Matthias Wählisch
    • 1
    • 2
  • Thomas C. Schmidt
    • 2
  • Georg Wittenburg
    • 1
  1. 1.Institut für InformatikFreie Universität BerlinBerlinGermany
  2. 2.Department InformatikHAW HamburgHamburgGermany

Personalised recommendations