A Mathematical Model for Evaluating the Perceptual Quality of Video

  • Jose Joskowicz
  • José-Carlos López-Ardao
  • Miguel A. González Ortega
  • Cándido López García
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5630)


In this paper, a simple mathematical formula is proposed which provides estimation for the perceived video quality, based solely in the codec used, the display format, the bit rate and the movement content in the original video. The quality metric used is one of the recently standardized in Recommendations ITU-T J.144 and ITU-R BT.1683, and developed by NTIA. The error obtained with the proposed formula, regarding to the ITU models, is between the ITU algorithms error margins, according to the subjective tests developed by the VQEG. Studies were made for more than 1500 processed video clips, coded in MPEG-2 and H.264/AVC, in bit rate ranges from 50 kb/s to 12 Mb/s, in SD, VGA, CIF and QCIF display formats.


Video perceptual quality Video codecs Video signal processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ISO/IEC 13818-2:2000. Information technology – generic coding of moving pictures and associated audio information: VideoGoogle Scholar
  2. 2.
    ITU-T H.264 Advanced Video Coding for Generic Audiovisual Services (March 2005 )Google Scholar
  3. 3.
    Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the H.264 / AVC Video Coding Standard. IEEE Transactions on Circuits and Systems For Video Technology 13 (July 2003)Google Scholar
  4. 4.
    Basso, A., Dalgic, I., Tobagi, F.A., van den Branden Lambrecht, C.J.: Study of MPEG-2 Coding Performance Based on a Perceptual Quality Metric. In: Proc. Picture Coding Symp., Melbourne, Australia, Melbourne, Australia (March 1996)Google Scholar
  5. 5.
    Kamaci, N., Altunbasak, Y.: Performance comparison of the emerging H.264 video coding standard with the existing standards. In: Proceedings ICME 2003, vol. 1, pp. I- 345–348 (2003)Google Scholar
  6. 6.
    Ostermann, J., Bormans, J., List, P., Marpe, D., Narroschke, M., Pereira, F., Stockhammer, T., Wedi, T.: Video coding with H.264/AVC: Tools, Performance, and Complexity. IEEE Circuits and Systems Magazine, First Quarter (2004)Google Scholar
  7. 7.
    Aeluri, P.K., Bojan, V., Richie, S., Weeks, A.: Objective quality analysis of MPEG-1, MPEG-2 & Windows Media video. In: 6th IEEE Southwest Symposium on Image Analysis and Interpretation, March 2004, pp. 221–225 (2004)Google Scholar
  8. 8.
    Ichigaya, A., Nishida, Y., Nakasu, E.: Nonreference Method for Estimating PSNR of MPEG-2 Coded Video by Using DCT Coefficients and Picture Energy. IEEE Transactions on Circuits and Systems for Video Technology 18(6), 817–826 (2008)CrossRefGoogle Scholar
  9. 9.
    Wang, S., Zheng, D., Zhao, J., Tarn, W.J., Speranza, F.: Video quality measurement using digital watermarking. In: Proceedings of the 3rd IEEE International Workshop on Haptic, Audio and Visual Environments and Their Applications, 2004. HAVE 2004, October 2, pp. 183–188 (2004)Google Scholar
  10. 10.
    Winkler, S.: Digital Video Quality, Vision Models and Metrics. John Wiley & Sons Ltd., Chichester (2005)CrossRefGoogle Scholar
  11. 11.
    Recommendation ITU-T J.144 Objective perceptual video quality measurement techniques for digital cable television in the presence of a full reference (February 2004) Google Scholar
  12. 12.
    Recommendation ITU-R BT.1683 – Objective perceptual video quality measurement techniques for standard definition digital broadcast television in the presence of a full reference (January 2004) Google Scholar
  13. 13.
    Final Report of VQEG’s Multimedia Phase I Validation Test September 19 (2008)Google Scholar
  14. 14.
    Pinson, M.H., Wolf, S.: A New Standardized Method for Objectively Measuring Video Quality. IEEE Transactions on Broadcasting 50(3), 312–322 (2004)CrossRefGoogle Scholar
  15. 15.
    Li, Z.G., et al.: Adaptive rate control for H.264. Journal of Visual Communication and Image Representation 17(2), 376–406 (2006)CrossRefGoogle Scholar
  16. 16.
    Jiang, M., Ling, N.: On enhancing H.264/AVC video rate control by PSNR-based frame complexity estimation. IEEE Transactions on Consumer Electronics 51(1), 281–286 (2005)CrossRefGoogle Scholar
  17. 17.
    Final Report From The Video Quality Experts Group On The Validation Of Objective Models Of Video Quality Assessment, Phase Ii ©2003 VQEG, August 25 (2003)Google Scholar
  18. 18.
    Cho, S., Choe, J., Jeong, T., Ahn, W., Lee, E.: Objective video quality assessment. Optical Engineering 45(1) (January 2006)Google Scholar
  19. 19.
    Lotufo, A., Da Silva, R., Falcao, W.D.F., Pessoa, A.X.: Morphological image segmentation applied to video quality assessment. In: IEEE Proceedings in Computer Graphics, Image Processing and Vision, SIGGRAPI Proceedings, October 1998, pp. 468–475 (1998)Google Scholar
  20. 20.
    Recommendation ITU-R BT.500-11, Methodology for the subjective assessment of the quality of television pictures, 06/2002 Google Scholar
  21. 21.
  22. 22.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jose Joskowicz
    • 1
  • José-Carlos López-Ardao
    • 1
  • Miguel A. González Ortega
    • 1
  • Cándido López García
    • 1
  1. 1.ETSE TelecomunicaciónVigoSpain

Personalised recommendations