Skip to main content

A Comparative Analysis of Specific Spatial Network Topological Models

  • Conference paper

Abstract

Creating ensembles of random but “realistic” topologies for complex systems is crucial for many tasks such as benchmark generation and algorithm analysis. In general, explanatory models are preferred to capture topologies of technological and biological complex systems, and some researchers claimed that it is largely impossible to capture any nontrivial network structure while ignoring domain-specific constraints. We study topology models of specific spatial networks, and show that a simple descriptive model, the generalized random graph model (GRG) which only reproduces the degree sequence of complex networks, can closely match the topologies of a variety of real-world spatial networks including electronic circuits, brain and neural networks and transportation networks, and outperform some plausible and explanatory models which consider spatial constraints.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang, J., Provan, G.M.: Generating application-specific benchmark models for complex systems. In: AAAI, pp. 566–571 (2008)

    Google Scholar 

  2. Li, L., Doyle, J.C., Willinger, W.: Towards a theory of scale-free graphs: Definition, properties, and implications. Internet Mathematics 2(4), 431–523 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: Structure and dynamics. Physics Reports 424(4-5), 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  4. Hansen, M.C., Yalcin, H., Hayes, J.P.: Unveiling the iscas-85 benchmarks: A case study in reverse engineering. IEEE Des. Test 16(3), 72–80 (1999)

    Article  Google Scholar 

  5. He, Y., Chen, Z.J.J., Evans, A.C.C.: Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex (2007)

    Google Scholar 

  6. Kaiser, M., Hilgetag, C.C.: Spatial growth of real-world networks. Phys. Rev. E 69(3), 036103 (2004)

    Article  Google Scholar 

  7. Dambre, J.: Prediction of interconnect properties for digital circuit design and technology exploration. Ph.D. dissertation: Ghent University, Faculty of Engineering (2003)

    Google Scholar 

  8. Amaral, L.A., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world networks. Proc. Natl. Acad. Sci. USA 97(21), 11149–11152 (2000)

    Article  Google Scholar 

  9. Mahadevan, P., Krioukov, D.V., Fall, K.R., Vahdat, A.: Systematic topology analysis and generation using degree correlations. In: SIGCOMM, pp. 135–146 (2006)

    Google Scholar 

  10. Middendorf, M., Ziv, E., Wiggins, C.H.: Inferring network mechanisms: the drosophila melanogaster protein interaction network. Proc. Natl. Acad. Sci. USA 102(9), 3192–3197 (2005)

    Article  Google Scholar 

  11. Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C.: Organization, development and function of complex brain networks. Trends in Cognitive Sciences 8, 418–425 (2004)

    Article  Google Scholar 

  12. Kaiser, M.: Brain architecture: a design for natural computation. Philosophical Transactions of the Royal Society A 365, 3033–3045 (2007)

    Article  MathSciNet  Google Scholar 

  13. Chklovskii, D.B.: Exact solution for the optimal neuronal layout problem. Neural Comput. 16(10), 2067–2078 (2004)

    Article  MATH  Google Scholar 

  14. Kaiser, M., Hilgetag, C.C.: Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Computational Biology 2(7), e95+ (2006)

    Article  Google Scholar 

  15. Costa, L., Kaiser, M., Hilgetag, C.: Predicting the connectivity of primate cortical networks from topological and spatial node properties. BMC Systems Biology 1, 16 (2007)

    Article  Google Scholar 

  16. Cancho, R.F.i., Janssen, C., Solé, R.V.: Topology of technology graphs: Small world patterns in electronic circuits. Physical Review E 64(4), 046119 (2001)

    Article  Google Scholar 

  17. Dorogovtsev, S.N., Mendes, J.F., Samukhin, A.N.: Structure of growing networks with preferential linking. Phys. Rev. Lett. 85(21), 4633–4636 (2000)

    Article  Google Scholar 

  18. Guimera, R., Amaral, L.: Modeling the world-wide airport network. The European Physical Journal B - Condensed Matter 38(2), 381–385 (2004)

    Google Scholar 

  19. Li, W., Cai, X.: Statistical analysis of airport network of china. Phys. Rev. E 69(4), 046106 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Wang, J., Provan, G. (2009). A Comparative Analysis of Specific Spatial Network Topological Models. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02469-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02469-6_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02468-9

  • Online ISBN: 978-3-642-02469-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics