Skip to main content

A Grid Implementation of Direct Semiclassical Calculations of Rate Coefficients

  • Conference paper
Computational Science and Its Applications – ICCSA 2009 (ICCSA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5593))

Included in the following conference series:

Abstract

A detailed description of the grid implementation on the production computing grid of EGEE of a semiclassical code performing a calculation of atom-diatom reaction rate coefficients is given. An application to the N + N2 reaction for which a massive computational campaign has been performed is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armenise, I., Capitelli, M., Celiberto, R., Colonna, G., Gorse, C., Laganà, A.: The effect of N+N2 Collisions on the Non-Equilibrium Vibrational Distributions of Nitrogen under Reentry Conditions. Chem. Phys. Letters 227, 157–163 (1994)

    Article  Google Scholar 

  2. Angelucci, M., Costantini, A., Crocchianti, S., Laganà, A., Vecchiocattivi, M.: Uno studio sull’ Ozono. Micron, rivista di informazione ARPA Umbria 9, 34–39 (2008)

    Google Scholar 

  3. Costantini, A.: Grid Enabled Distributed Computing: from Molecular Dynamics to Multiscale Simulations. PhD Thesis, University of Perugia, Perugia (I) (2009)

    Google Scholar 

  4. Carvalho, M.: Clean Combustion Technologies. CRC Press, Boca Raton (1999)

    Google Scholar 

  5. Porrini, M.: A Molecular Dynamics Study of Lamellar Membranes Microsolvated Benzene for a Grid Approach. PhD Thesis, University of Perugia, Perugia (I) (2006)

    Google Scholar 

  6. Arteconi, L.: Molecular Dynamics Modeling of Micropores of cellular membranes. PhD Thesis, University of Perugia, Perugia (I) (2008)

    Google Scholar 

  7. Bruno, D., Capitelli, M., Longo, S., Minelli, P.: Direct Simulation Monte Carlo Modeling of Non Equilibrium Reacting Flows. Issues for the Inclusion into a ab initio Molecular Processes Simulator. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3044, pp. 383–391. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Bowman, J.M.: Approximate Time Independent Methods for Polyatomic Reactions. Lecture Notes in Chemistry 75, 101–114 (2000)

    Article  Google Scholar 

  9. Skouteris, D., Pacifici, L., Laganà, A.: A Time Dependent Study of the Nitrogen. Atom Nitrogen Molecule Reaction. Mol. Phys. 102, 2237–2248 (2004)

    Article  Google Scholar 

  10. Skouteris, D., Castillo, J.F., Manolopulos, D.E.: ABC: a quantum reactive scattering program. Comp. Phys. Comm. 133, 128–135 (2000)

    Article  MATH  Google Scholar 

  11. Johnston, H.S.: Gas phase reaction rate theory. The Ronald Press Company, New York (1966)

    Google Scholar 

  12. Manthe, U., Seideman, T., Miller, W.H.: Full Dimensional Quantum Mechanical Calculation of the Rate Constant for the H2 + OH → H2O + H Reaction. J. Chem. Phys. 99, 10078–10081 (1993)

    Article  Google Scholar 

  13. Wang, H., Thompson, W.T., Miller, W.H.: “Direct” Calculation of Thermal Rate Constants for the F + H2 → HF + H Reaction. J. Phys. Chem. A 102, 9372–9379 (1998)

    Article  Google Scholar 

  14. Viel, A., Leforestier, C., Miller, W.H.: Quantum Mechanical Calculation of the Rate Constant for the Reaction H + O2 → OH + O. J. Chem. Phys. 108, 3489–3497 (1998)

    Article  Google Scholar 

  15. Miller, W.H.: “Direct” and “Correct” Calculation of Microcanonical and Canonical Rate Constants for Chemical Reactions. J. Phys. Chem. A 102, 793–806 (1998)

    Article  Google Scholar 

  16. Yamamoto, T., Miller, W.H.: Semiclassical Calculation of Thermal Rate Constants in Full Cartesian Space: The Benchmark Reaction for D + H2 → DH + H. J. Chem. Phys. 118, 2135–2152 (2003)

    Article  Google Scholar 

  17. Enabling Grids for E-Science in Europe (EGEE), project funded by the European Union, http://compchem.unipg.it/

  18. Laganà, A., Riganelli, A., Gervasi, O.: On the Structuring of the Computational Chemistry Virtual Organization COMPCHEM. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3980, pp. 665–674. Springer, Heidelberg (2006), http://www.eu-egee.org/compchem

    Chapter  Google Scholar 

  19. Miller, W.H.: Quantum Mechanical Transition State Theory and a New Semiclassical Model for Reaction Rate Constants. J. Chem. Phys. 61, 1823–1834 (1974)

    Article  Google Scholar 

  20. Yamamoto, T.: Quantum statistical mechanical theory of the rate of exchange chemical reactions in the gas phase. J. Chem. Phys. 33, 281–289 (1960)

    Article  MathSciNet  Google Scholar 

  21. Miller, W.H.: The Classical S-Matrix: Numerical Application to Inelastic Collisions. J. Chem. Phys. 53, 3578–3587 (1970)

    Article  Google Scholar 

  22. Heller, E.: J. Chem. Phys. 94, 2723–2729 (1991)

    Article  Google Scholar 

  23. Ceperley, D.M.: Path integrals in the theory of condensed helium. Rev. Mod. Phys. 67, 279–355 (1995)

    Article  Google Scholar 

  24. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of State calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  Google Scholar 

  25. Herman, M.F., Kluk, E.: A semiclassical justification for the use of non-spreading wavepackets in dynamic calculations. Chem. Phys. 91, 27–34 (1984)

    Article  Google Scholar 

  26. Kay, K.G.: Integral Expressions for the Semiclassical Time-Dependent Propagator. J. Chem. Phys. 100, 4377–4392 (1994)

    Article  Google Scholar 

  27. Kay, K.G.: Numerical Study of Semiclassical Initial-Value Methods for Dynamics. J. Chem. Phys. 100, 4432–4445 (1994)

    Article  Google Scholar 

  28. Harris, D., Engerholm, G., Gwinn, W.: J. Chem. Phys. 43, 1515–1517 (1965)

    Article  Google Scholar 

  29. Lyubartsev, A.P., Martsinovski, A.A., Shevkunov, S.V., Vorontsov-Velyaminov, P.N.: Method of Expanded Ensembles. J. Chem. Phys. 96, 1776–1783 (1992)

    Article  Google Scholar 

  30. Yamamoto, T., Wang, H., Miller, W.H.: Combining Semiclassical Time Evolution and Quantum Boltzmann Operator to Evaluate Reactive Flux Correlation Function for Thermal Rate Constants of Complex Systems. J. Chem. Phys. 116, 7335–7349 (2002)

    Article  Google Scholar 

  31. gLite website, http://glite.web.cern.ch/glite

  32. The Globus Project, http://www.globus.org

  33. DEMOCRITOS is the National Simulation Center of the Italian Istituto Nazionale per la Fisica della Materia (INFM), hosted by Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, http://www.democritos.it/

  34. Garcia, E., Laganà, A.: Effect of Varying the Transition State Geometry on N + N2 Vibrational Deexcitation Rate Coefficients. J. Phys. Chem. A 101, 4734–4740 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Costantini, A., Faginas Lago, N., Laganà, A., Huarte-Larrañaga, F. (2009). A Grid Implementation of Direct Semiclassical Calculations of Rate Coefficients. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2009. ICCSA 2009. Lecture Notes in Computer Science, vol 5593. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02457-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02457-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02456-6

  • Online ISBN: 978-3-642-02457-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics