Skip to main content

Design and Development of an Intelligent Extension for Mapping Landslide Susceptibility Using Artificial Neural Network

  • Conference paper
Computational Science and Its Applications – ICCSA 2009 (ICCSA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5592))

Included in the following conference series:

Abstract

Amongst the indirect and quantitative methods which have been propounded for assessing landslide susceptibility, artificial neural network and especially multilayer perceptron dominated research activities. It is due to its high power in solving nonlinear separable problems and the capability of generalization. This study deals with designing a model for systematic usage of multilayer perceptron network to solve existing challenges on choosing input patterns and target outputs of spatial data. This model accompanies with a modified Backpropagation (BP) as a learning algorithm. The designed model was applied to create an extension in ArcGIS® in order to reach an intelligent decision-making tool. The Landslide Susceptibility Map (LSM) was then generated for an expanded landscape in Mazandaran, Iran, using the extension while the landslide’s data and criteria maps were produced in small-scale. Statistical results of landslides which were happened in different domains of susceptibility showed the overall accuracy equivalent to 98.2% in hazard approximating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nefeslioglu, H.A., Duman, T.Y., Durmaz, S.: Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology 94, 401–418 (2008)

    Article  Google Scholar 

  2. Van Westen, C.J., Van Asch, T.W.J., Soeters, R.: Landslide hazard and risk zonation: why is it still so difficult? Bulletin of Engineering Geology and the Environment 65, 176–184 (2005)

    Google Scholar 

  3. Varnes, D.J.: Landslide Hazard Zonation: A Review of Principles and Practice, p. 176. UNESCO Press, Paris (1984)

    Google Scholar 

  4. Soriso Valvo, M.: Landslides; from inventory to risk. In: Rybár, Stemberk, Wagner (eds.) Proc. of the 1st European conference on landslides, pp. 59–79. Prague, Balkema, Rotterdam (2002)

    Google Scholar 

  5. Brabb, E.E.: Innovative approaches to landslide hazard and risk mapping. In: Proc. Fourth International Symposium on Landslides, vol. 1, pp. 307–324. Canadian Geotechnical Society, Toronto, Canada (1984)

    Google Scholar 

  6. Crozier, M.J., Glade, T.: Landslide hazard and risk: issues, concepts and approach. In: Glade, T., Anderson, M., Crozier, M.J. (eds.) Landslide Hazard and Risk, pp. 1–40. Wiley, Chichester (2005)

    Google Scholar 

  7. Carrara, A., Guzzetti, F. (eds.): Geographical Information Systems in Assessing Natural Hazards. Kluwer Academic Publisher, Dordrecht (1995)

    Google Scholar 

  8. Barredol, J.I., Benavidesz, A., Herhl, J., van Westen, C.J.: Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain. International Journal of Applied Earth Observation and Geoinformation 2, 9–23 (2000)

    Article  Google Scholar 

  9. Agnesi, V., Conoscenti, C., Di Maggio, C., Iudicello, C., Rotigliano, E.: Landslide hazard analysis in the Giardo River Basin (Middle-Western Sicily). In: Proceedings of the Workshop on Geomorphological sensitivity and system response, pp. 3–11. Università di Camerino - Università di Modena, Camerino, Italy (2003)

    Google Scholar 

  10. Clerici, A., Perego, S., Tellini, C., Vescovi, P.: A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology 48, 349–364 (2002)

    Article  Google Scholar 

  11. Gomez, H., Kavzoglu, T.: Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Engineering Geology 78, 11–27 (2005)

    Article  Google Scholar 

  12. Vande Sande, H., Hameyer, K.: A comparison of neural network and polynomial models for the approximation of non-linear and anisotropic ferromagnetic materials. In: Proceedings of The Fourth International Conference on Computation in Electromagnetics, Bournemouth, UK, p. 2 (2002)

    Google Scholar 

  13. Ermini, L., Catani, F., Casagli, N.: Artificial Neural Networks applied to landslide susceptibility assessment. Geomorphology 66, 327–343 (2005)

    Article  Google Scholar 

  14. Yesilnacar, E., Topal, T.: Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region, Turkey. Engineering Geology 79, 251–266 (2005)

    Article  Google Scholar 

  15. Kanungo, D.P., Arora, M.K., Sarkar, S., Gupta, R.P.: A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Engineering Geology 85, 347–366 (2006)

    Article  Google Scholar 

  16. Lee, S., Ryu, J.H., Won, J.S., Park, H.J.: Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Engineering Geology 71, 289–302 (2004)

    Article  Google Scholar 

  17. Arora, M.K., Das Gupta, A.S., Gupta, R.P.: An artificial neural network approach for landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas. Int. J. Remote Sens. 25, 559–572 (2004)

    Article  Google Scholar 

  18. Malczewski, J.: GIS and Multicriteria Decision Analysis. Wiley & Sons Inc., Chichester (1999)

    Google Scholar 

  19. Picton, P.: Neural Networks. Palgrave Macmillan (2000)

    Google Scholar 

  20. Samanta, B., Bandopadhyay, S., Ganguli, R.: Comparative Evaluation of Neural Network Learning Algorithms for Ore Grade Estimation. Mathematical Geology 38, 175–197 (2006)

    Article  MATH  Google Scholar 

  21. Beale, R., Jackson, T.: Neural Computation: An Introduction. Institue of Physics Publishing (1998)

    Google Scholar 

  22. Hagan, M.T., Demuth, H.B., Beale, M.: Neural Network Design. PWS Publishing Company (1995)

    Google Scholar 

  23. Rumelhart, D.E., McClelland, J.L.: Parallel Distributed Processing: Explorations in the Microstructure of Cognition. In: Foundations, vol. 1, MIT Press, Cambridge, MA (1986)

    Google Scholar 

  24. Hertz, J.A., Krogh, A., Palmer, R.G.: Introduction to the Theory of Neural Computation. Addison Wesley, Redwood City, CA (1991)

    Google Scholar 

  25. Vogl, T.P., Mangis, J.K., Zigler, A.K., Zink, W.T., Alkon, D.L.: Accelerating the convergence of the backpropagation method. Biological Cybernetics 59, 256–264 (1988)

    Article  Google Scholar 

  26. Bonham-Carter, G.F.: Geographic information systems for geoscientist: Modelling with GIS. In: Merriam, D.F. (ed.) Computer Methods in the Geosciences, vol. 13, pp. 302–334. Pergamon/Elsevier, New York (2002)

    Google Scholar 

  27. Bonham-Carter, G.F., Agterberg, F.P., Wright, D.F.: Weights of evidence modelling: a new approach to mapping mineral potential. Statistical Applications in Earth Sciences 89, 171–183 (1989)

    Google Scholar 

  28. Calcerrada, R., Luque, S.: Habitat Quality Assessment using Weight-of-Evidence based GIS modeling: The Case of Picoids Tridactylus as Species Indicator of the Biodiversity Value of the Finnish Forest. Ecological Modeling 196, 62–76 (2006)

    Article  Google Scholar 

  29. Neuhäuser, B., Terhorst, B.: Landslide susceptibility assessment using “weights-of-evidence” applied to a study area at the Jurassic escarpment (SW-Germany). Geomorphology 86, 12–24 (2007)

    Article  Google Scholar 

  30. ESRI, ArcGIS Desktop Developer Guide: ArcGIS 9.1, p. 335. ESRI, Redlands, CA (2004)

    Google Scholar 

  31. Sawatzky, D.L., Raines, G.L., Bonham-Carter, G.F., Looney, C.G.: Spatial Data Modeller (SDM): ArcMAP 9.2 geoprocessing tools for spatial data modelling using weights of evidence, logistic regression, fuzzy logic and neural networks (2008), http://arcscripts.esri.com/details.asp?dbid=15341

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vahidnia, M.H., Alesheikh, A.A., Alimohammadi, A., Hosseinali, F. (2009). Design and Development of an Intelligent Extension for Mapping Landslide Susceptibility Using Artificial Neural Network. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2009. ICCSA 2009. Lecture Notes in Computer Science, vol 5592. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02454-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02454-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02453-5

  • Online ISBN: 978-3-642-02454-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics