Skip to main content

The Structure of Level-k Phylogenetic Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5577))

Abstract

Evolution is usually described as a phylogenetic tree, but due to some exchange of genetic material, it can be represented as a phylogenetic network which has an underlying tree structure. The notion of level was recently introduced as a parameter on realistic kinds of phylogenetic networks to express their complexity and tree-likeness. We study the structure of level-k networks, and how they can be decomposed into level-k generators. We also provide a polynomial time algorithm which takes as input the set of level-k generators and builds the set of level-(k + 1) generators. Finally, with a simulation study, we evaluate the proportion of level-k phylogenetic networks among networks generated according to the coalescent model with recombination.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arenas, M., Posada, D.: Recodon: Coalescent Simulation of Coding DNA Sequences with Recombination, Migration and Demography. BMC Bioinformatics 8, 458 (2007)

    Article  Google Scholar 

  2. Arenas, M., Valiente, G., Posada, D.: Characterization of Reticulate Networks based on the Coalescent with Recombination. Molecular Biology and Evolution 25(12), 2517–2520 (2008)

    Article  Google Scholar 

  3. Byrka, J., Gawrychowski, P., Huber, K.T., Kelk, S.: Worst-case Optimal Approximation Algorithms for Maximizing Triplet Consistency within Phylogenetic Networks. To appear in Journal of Discrete Algorithms (2009)

    Google Scholar 

  4. Chan, H.-L., Jansson, J., Lam, T.-W., Yiu, S.-M.: Reconstructing an Ultrametric Galled Phylogenetic Network from a Distance Matrix. Journal of Bioinformatics and Computational Biology 4(4), 807–832 (2006)

    Article  MATH  Google Scholar 

  5. Choy, C., Jansson, J., Sadakane, K., Sung, W.-K.: Computing the Maximum Agreement of Phylogenetic Networks. Theor. Comput. Sci. 335(1), 93–107 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cardona, G., Rosselló, F., Valiente, G.: Comparison of Tree-Child phylogenetic networks. To appear in IEEE/ACM Trans. on Comp. Biol. and Bioinf. (2009)

    Google Scholar 

  7. Engelfriet, J., van Oostrom, V.: Logical Description of Contex-Free Graph Languages. J. Comput. Syst. Sci. 55(3), 489–503 (1997)

    Article  MATH  Google Scholar 

  8. Galtier, N.: A Model of Horizontal Gene Transfer and the Bacterial Phylogeny Problem. Systematic Biology 56, 633–642 (2007)

    Article  Google Scholar 

  9. Gambette, P.: Who is Who in Phylogenetic Networks: Articles, Authors and Programs, http://www.lirmm.fr/~gambette/PhylogeneticNetworks

  10. Gioan, E., Paul, C.: Split Decomposition and Graph-Labelled Trees: Characterizations and Fully-Dynamic Algorithms for Totally Decomposable Graphs (submitted, 2009)

    Google Scholar 

  11. Gusfield, D., Bansal, V.: A Fundamental Decomposition Theory for Phylogenetic Networks and Incompatible Characters. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 217–232. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Gusfield, D., Eddhu, S., Langley, C.: Efficient Reconstruction of Phylogenetic Networks with Constrained Recombination. In: IEEE Computational Systems Bioinformatics Conference (CSB 2003), pp. 363–374 (2003)

    Google Scholar 

  13. Grant, V.: Plant Speciation, pp. 300–320. Columbia University Press (1971)

    Google Scholar 

  14. Hallett, M., Lagergren, J.: Efficient Algorithms for Lateral Gene Transfers Problems. In: International Conference on Research in Computational Molecular Biology (RECOMB 2001), pp. 141–148 (2001)

    Google Scholar 

  15. Hudson, R.R.: Properties of the Neutral Allele Model with Intragenic Recombination. Theoretical Population Biology 23, 183–201 (1983)

    Article  MATH  Google Scholar 

  16. Huson, D.H.: Split Networks and Reticulate Networks. In: Gascuel, O., Steel, M. (eds.) Reconstructing Evolution, pp. 247–276. Oxford University Press, Oxford (2007)

    Google Scholar 

  17. van Iersel, L., Keijsper, J., Kelk, S., Stougie, L., Hagen, F., Boekhout, T.: Constructing Level-2 Phylogenetic Networks from Triplets. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI), vol. 4955, pp. 450–462. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. van Iersel, L., Kelk, S.: Constructing the Simplest Possible Phylogenetic Network from Triplets. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 472–483. Springer, Heidelberg (2008)

    Google Scholar 

  19. van Iersel, L., Kelk, S., Mnich, M.: Uniqueness, Intractability and Exact Algorithms: Reflections on Level-k Phylogenetic Network. To appear in Journal of Bioinformatics and Computational Biology (2009)

    Google Scholar 

  20. Jansson, J., Sung, W.-K.: Inferring a Level-1 Phylogenetic Network from a Dense Set of Rooted Triplets. Theor. Comput. Sci. 363(1), 60–68 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kanj, I.A., Nakhleh, L., Than, C., Xia, G.: Seeing the Trees and Their Branches in the Network is Hard. Theor. Comput. Sci. 401, 153–164 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kelk, S., http://homepages.cwi.nl/~kelk/lev3gen/

  23. Kaibel, V., Schwartz, A.: On the Complexity of Polytope Isomorphism Problems. Graphs and Combinatorics 19(2), 215–230 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Linder, C.R., Rieseberg, L.H.: Reconstructing Patterns of Reticulate Evolution in Plants. American Journal of Botany 91(10), 1700–1708 (2004)

    Article  Google Scholar 

  25. Luks, E.M.: Isomorphism of Graphs of Bounded Valence Can be Tested in Polynomial Time. Journal of Computer and System Sciences 25(1), 42–65 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. MacLeod, D., Charlebois, R.L., Doolittle, W.F., Bapteste, E.: Deduction of Probable Events of Lateral Gene Transfer through Comparison of Phylogenetic Trees by Recursive Consolidation and Rearrangement. BMC Evol. Biol. 5, 27 (2005)

    Article  Google Scholar 

  27. Miller, G.L.: Graph Isomorphism, General Remarks. In: ACM Symposium on Theory of Computing (STOC 1977), pp. 143–150 (1977)

    Google Scholar 

  28. Morin, M.M., Moret, B.M.E.: NetGen: Generating Phylogenetic Networks with Diploid Hybrids. Bioinformatics 22(15), 1921–1923 (2006)

    Article  Google Scholar 

  29. Ma, B., Wang, L., Li, M.: Fixed Topology Alignment with Recombination. In: Farach-Colton, M. (ed.) CPM 1998. LNCS, vol. 1448, pp. 174–188. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  30. Nakhleh, L., Warnow, T., Linder, C.R., St. John, K.: Reconstructing Reticulate Evolution in Species - Theory and Practice. Journal of Computational Biology 12(6), 796–811 (2005)

    Article  Google Scholar 

  31. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences. Published electronically, http://www.research.att.com/~njas/sequences/

  32. Semple, C., Steel, M.: Unicyclic Networks: Compatibility and Enumeration. IEEE/ACM Trans. on Comp. Biol. and Bioinf. 3, 398–401 (2004)

    Google Scholar 

  33. To, T.-H., Habib, M.: Level-k Phylogenetic Network Are Constructable from a Dense Triplet Set in Polynomial Time. In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 275–288. Springer, Heidelberg (2009)

    Google Scholar 

  34. Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination. In: ACM Symposium on Applied Computing (SAC 2001), pp. 46–50 (2001)

    Google Scholar 

  35. Zemlyachenko, V.N., Korneenko, N.M., Tyshkevich, R.I.: Graph Isomorphism Problem. Journal of Mathematical Sciences 29(4), 1426–1481 (1985)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gambette, P., Berry, V., Paul, C. (2009). The Structure of Level-k Phylogenetic Networks. In: Kucherov, G., Ukkonen, E. (eds) Combinatorial Pattern Matching. CPM 2009. Lecture Notes in Computer Science, vol 5577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02441-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02441-2_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02440-5

  • Online ISBN: 978-3-642-02441-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics