Quantitative Analyses of Trace Elements in Environmental Samples: Options and (Im)possibilities

  • Katarina Vogel-MikušEmail author
  • Peter Kump
  • Marijan Nečemer
  • Primož Pelicon
  • Iztok Arčon
  • Paula Pongrac
  • Bogdan Povh
  • Marjana Regvar
Part of the Soil Biology book series (SOILBIOL, volume 19)


The main aim of contemporary ecotoxicological studies is to determine the bioavailability, toxicity and risk relationships of trace-element contaminants in ecosystems. Discussions thus focus primarily on the concentrations of elements in soils, their dynamics, and the impact they have on microorganisms, plants, animals and the ecosystem as a whole. However, before the basic ecotoxicological principles can be discussed, the appropriate analytical methods for addressing particular question(s) need to be chosen from among the broad array of physicochemical analytical methods that are available. Together with the sampling strategy and preparation, these are key issues that affect the final outcome. In this chapter, we mainly focus on the presentation and use of X-ray fluorescence/absorption-based techniques. These include standard and total reflection X-ray fluorescence, micro-proton-induced X-ray emission, and X-ray absorption spectroscopy (such as extended X-ray absorption fine structure and X-ray absorption near-edge structure) for the analysis of trace-element concentrations and their coordination in biological samples.


XANES Spectrum Synchrotron Radiation Source Nuclear Microprobe Dimethylarsenic Acid Fluorescence Detection Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The X-ray absorption spectroscopy experiments were performed in various synchrotron laboratories, including ESRF in Grenoble, ELETTRA in Trieste, and HASYLAB, DESY in Hamburg, with the financial support of European Community Contract RII3-CT-2004-506008 (IA-SFS).


  1. Arčon I, Mirtič B, Kodre A (1998) Determination of valence states of chromium in calcium chromates by using X-ray absorption near-edge structure (XANES) spectroscopy. J Am Ceram Soc 81:222–224Google Scholar
  2. Arčon I, Kolar J, Kodre A, Hanžel D, Strlič M (2007) XANES analysis of Fe valence in iron gall inks. X-Ray Spectrom 36:199–205CrossRefGoogle Scholar
  3. Bhatia NP, Walsh KB, Orlic I, Siegele R, Ashwath N, Baker AJM (2004) Studies on spatial distribution of nickel in leaves and stems of the metal hyperaccumulator Stackhousia tryonii using nuclear microprobe (micro-PIXE) and EDXS techniques. Funct Plant Biol 31:1061–1074CrossRefGoogle Scholar
  4. Breese MBH, Jamieson DN, King PJC (1996) Materials analysis using a nuclear microprobe. Wiley, New YorkGoogle Scholar
  5. Campbell JL, Hopman TL, Maxwell JA, Nejedly Z (2000) The Guelph PIXE software package III: Alternative proton database. Nucl Instrum Meth B 170:193–204CrossRefGoogle Scholar
  6. van Elteren JT, Šlejkovec Z, Arčon I, Glass HJ (2006) An interdisciplinary physical-chemical approach for characterisation of arsenic in a calciner residue dump in Cornwall (UK). Environ Pollut 139:477–488PubMedCrossRefGoogle Scholar
  7. Fahrni CJ (2007) Biological applications of X-ray fluorescence microscopy: exploring the subcellular topography and speciation of transition metals. Curr Opin Chem Biol 11:121–127PubMedCrossRefGoogle Scholar
  8. Frahm R (1989) New method for time-dependent X-ray absorption studies. Rev Sci Instrum 60:2515CrossRefGoogle Scholar
  9. Habchi C, Nguyen DT, Devès G, Incerti S, Lemelle L, Le Van Vang P, Ph M, Ortega R, Seznec H, Sakellariou A, Sergeant C, Simionovici A, Ynsa MD, Gontier E, Heiss M, Pouthier T, Boudou A, Rebillat F (2006) Three-dimensional densitometry imaging of diatom cells using STIM tomography. Nucl Instrum Meth B 249:653–659CrossRefGoogle Scholar
  10. Hettiarachchi GM, Scheckel KG, Ryan JA, Sutton SR, Newville M (2006) µ-XANES and µ-XRF investigations of metal-binding mechanisms in biosolids. J Environ Qual 35:342–351PubMedCrossRefGoogle Scholar
  11. Ishii K, Yamazaki H, Matsuyama S, Galster W, Satoh T, Budnar M (2005) Contribution of atomic bremsstrahlung in PIXE spectra and screening effect in atomic bremsstrahlung. X-Ray Spectrom 34:363–365CrossRefGoogle Scholar
  12. Jaklevic JM, Giauque RD (1993) Energy-dispersive X-ray fluorescence analysis using X-ray tube excitation. In: Van Grieken RE, Markowicz AA (eds) Handbook of X-ray spectronomy. Marcell Dekker, New York, pp 151–180Google Scholar
  13. Johansson SAE, Campbell JL (1988) PIXE: a novel technique for elemental analysis. Wiley, New YorkGoogle Scholar
  14. Kachenko AG, Siegele R, Bhatia NP, Singh B, Ionescu M (2008) Evaluation of specimen preparation techniques for micro-PIXE localisation of elements in hyperaccumulating plants. Nucl Instrum Meth B 266:1598–1604CrossRefGoogle Scholar
  15. Kanngießer B, Hahn O, Wilke M, Nekat B, Malzer W, Erko A (2004) Investigation of oxidation and migration processes of inorganic compounds in ink-corroded manuscripts. Spectrochim Acta B 59:1511–1516CrossRefGoogle Scholar
  16. Karydas A-G, Sokaras D, Zarkadas C, Grlj N, Pelicon P, Žitnik M, Schütz R, Malzer W, Kanngießer B (2007) 3D Micro PIXE - a new technique for depth-resolved elemental analysis. J Anal Atom Spectrom 22:1260–1265CrossRefGoogle Scholar
  17. Klockenkämper R (1997) Total-reflection X-ray fluorescence (Chemical analysis: a series of monographs on analytical chemistry and its applications). Wiley, New YorkGoogle Scholar
  18. Kodre A, Arčon I, Padežnik Gomilšek J, Prešeren R, Frahm R (2002) Multielectron excitations in X-ray absorption spectra of Rb and Kr. J Phys B-At Mol Opt 35:3497–3518CrossRefGoogle Scholar
  19. Koningsberger DC, Prins R (1988) X-ray Absorption, Principles, Techniques of EXAFS, SEXAFS and XANES. Wiley, New YorkGoogle Scholar
  20. Kump P, Nečemer M, Veber M (1997) Determination of trace elements in mineral water using total-reflection X-ray fluorescence spectrometry after pre-concentration with ammonium pyrrolidinedithiocarbamate. X-Ray Spectrom 26:232–236CrossRefGoogle Scholar
  21. Lee PA, Citrin PH, Eisenberger P, Kincaid BM (1981) Extended X-ray absorption fine structure - its strengths and limitations as a structural tool. Rev Mod Phys 53:769–806CrossRefGoogle Scholar
  22. Legge GJF, Cholewa M (1994) The principles of proton probe microanalysis in biology. Scanning Microsc Suppl 8:295–315PubMedGoogle Scholar
  23. Maenhaut W, Malmqvist KG (1993) Particle-induced X-ray emission. In: Van Grieken RE, Markowicz AA (eds) Handbook of X-ray spectronomy. Marcell Dekker, New York, pp 517–582Google Scholar
  24. Markowicz AA (1993) X-ray physics. In: Van Grieken RE, Markowicz AA (eds) Handbook of X-ray spectronomy. Marcell Dekker, New York, pp 1–74Google Scholar
  25. Mesjasz-Przybyłowicz J, Przybyłowicz WJ (2002) Micro-PIXE in plant sciences: present status and perspectives. Nucl Instrum Meth B 189:470–481CrossRefGoogle Scholar
  26. Nečemer M, Kump P, Ščančar J, Jačimovič R, Simčič J, Pelicon P, Budnar M, Jeran Z, Pongrac P, Regvar M, Vogel-Mikuš K (2008) Application of X-ray fluorescence analytical techniques in phytoremediation and plant bilogy studies. Spectrochim Acta B . doi: 10.1016/j.sab.2008.07.006 Google Scholar
  27. Orlic I, Siegele R, Hammerton K, Jeffree RA, Cohen DD (2003) Nuclear microprobe analysis of lead profile in crocodile bones. Nucl Instrum Meth B 210:330–335CrossRefGoogle Scholar
  28. Pallon J, Auzelyte V, Elfman M, Garmer M, Kristiansson P, Malmqvist K, Nilsson C, Shariff A, Wegdén M (2004) An off-axis STIM procedure for precise mass determination and imaging. Nucl Instrum Meth B 219–220:988–993CrossRefGoogle Scholar
  29. Pantelouris A, Modrow H, Pantelouris M, Hormes J, Reinen D (2004) The influence of coordination geometry and valency on the K-edge absorption near-edge spectra of selected chromium compounds. Chem Phys 300:13–22CrossRefGoogle Scholar
  30. Pascarelli S, Neisius T, De Panfillis S (1999) Turbo-XAS: dispersive XAS using sequential acquisition. J Synchrotron Radiat 6:1044–1050CrossRefGoogle Scholar
  31. Prešeren R, Kodre A, Arčon I, Borowski M (2001) Atomic background and EXAFS of gaseous hydrides of Ge, As, Se and Br. J Synchrotron Radiat 8:279–281PubMedCrossRefGoogle Scholar
  32. Proost K, Janssens K, Wagner B, Bulska E, Schreiner M (2004) Determination of localized Fe2+/Fe3+ ratios in inks of historic documents by means of μ-XANES. Nucl Instrum Meth B 213:723–728CrossRefGoogle Scholar
  33. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541PubMedCrossRefGoogle Scholar
  34. Rehr JJ, Albers RC, Zabinsky SI (1992) High-order multiple-scattering calculations of X-ray-absorption fine structure. Phys Rev Lett 69:3397–3400PubMedCrossRefGoogle Scholar
  35. Rehr JJ, Albers RC (2000) Theoretical approaches to X-ray absorption fine structure. Rev Mod Phys 72:621CrossRefGoogle Scholar
  36. Ryan CG (2001) Developments in dynamic analysis for quantitative PIXE true elemental imaging. Nucl Instrum Meth B 181:170–179CrossRefGoogle Scholar
  37. Scheloske S, Schneider T (2002) BIOPIXE: a new PIXE-data software package to analyse quantitative elemental distributions of inhomogeneous samples. Nucl Instrum Meth B 189:148–152CrossRefGoogle Scholar
  38. Schneider T, Haag-Kerwer A, Maetz M, Niecke M, Povh B, Rausch T, Schuszler A (1999) Micro-PIXE studies of elemental distribution in Cd-accumulating Brassica juncea L. Nucl Instrum Meth B 158:329–334CrossRefGoogle Scholar
  39. Schneider T, Sheloske S, Povh B (2002) A method for cryosectioning of plant roots for proton microprobe analysis. Int J PIXE 12:101–107CrossRefGoogle Scholar
  40. Schwenke H, Knoth J (1993) Total reflection XRF. In: Van Grieken RE, Markowicz AA (eds) Handbook of X-ray spectronomy. Marcell Dekker, New York, pp 453–490Google Scholar
  41. Small JA (1993) Electron-induced X-ray emission. In: Van Grieken RE, Markowicz AA (eds) Handbook of X-ray spectronomy. Marcell Dekker, New York, pp 583–656Google Scholar
  42. Tylko G, Mesjasz-Przybyłowicz J, Przybyłowicz WJ (2007) X-ray microanalysis of biological material in the frozen-hydrated state by PIXE. Microsc Res Techniq 70:55–68CrossRefGoogle Scholar
  43. Uzonyi I, Szabó Gy (2005) PIXEKLM-TPI - a software package for quantitative elemental imaging with nuclear microprobe. Nucl Instrum Meth B 231:156–161CrossRefGoogle Scholar
  44. Vogel-Mikuš K, Pongrac P, Kump P, Nečemer M, Simčič J, Pelicon J, Budnar M, Povh B, Regvar M (2007) Localisation and quantification of elements within seeds of Cd/Zn hyperaccumulator Thlaspi praecox by micro-PIXE. Environ Pollut 147:50–59PubMedCrossRefGoogle Scholar
  45. Vogel-Mikuš K, Simčič J, Pelicon J, Budnar M, Kump P, Nečemer M, Mesjasz-Przybyłowicz J, Przybyłowicz W, Regvar M (2008a) Comparison of essential and non-essential element distribution in leaves of the Cd/Zn hyperaccumulator Thlaspi praecox as revealed by micro-PIXE. Plant Cell Environ 31:1484–1496PubMedCrossRefGoogle Scholar
  46. Vogel-Mikuš K, Regvar M, Mesjasz-Przybyłowicz J, Przybyłowicz W, Simčič J, Pelicon P, Budnar M (2008b) Spatial distribution of Cd in leaves of metal hyperaccumulating Thlaspi praecox using micro-PIXE. New Phytol 179:712–721PubMedCrossRefGoogle Scholar
  47. Vogel-Mikuš K, Pongrac P, Pelicon P, Vavpetič P, Povh B, Bothe H, Regvar M (2008c) Micro-PIXE Analysis for Localisation and Quantification of Elements in Roots of Mycorrhizal Metal-Tolerant Plants. Symbiotic Fungus: Principles and Practice. Springer, Berlin, In pressGoogle Scholar
  48. Wong J, Lytle FW, Messmer RP, Maylotte DH (1984) K-edge spectra of selected vanadium compounds. Phys Rev B 30:5596–5610CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Katarina Vogel-Mikuš
    • 1
    Email author
  • Peter Kump
    • 2
  • Marijan Nečemer
    • 2
  • Primož Pelicon
    • 2
  • Iztok Arčon
    • 2
    • 3
  • Paula Pongrac
    • 1
  • Bogdan Povh
    • 4
  • Marjana Regvar
    • 1
  1. 1.Department of BiologyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Jožef Stefan InstituteLjubljanaSlovenia
  3. 3.University of Nova GoricaNova GoricaSlovenia
  4. 4.Max-Planck-Institut fűr KernphysikHeidelbergGermany

Personalised recommendations