Advertisement

Arbuscular Mycorrhiza, Heavy Metal,and Salt Tolerance

  • Hermann Bothe
  • Marjana Regvar
  • Katarzyna Turnau
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 19)

Abstract

More than 80% of all higher plants are colonized by arbuscular mycorrhizal fungi (AMF) under diverse stress conditions. The extent of mycorrhizal colonization in plants that grow in heavy metal soils (metallophytes) or salt marshes (halophytes) is species dependent. Specially adapted AMF have repeatedly been reported to alleviate the toxicity of heavy metals to plants. Factors governing the heavy metal tolerance conferred by AMF have been elucidated. Compared to this, the current state of knowledge regarding AMF and salt tolerance appears to be underdeveloped, despite the enormous potential applications of this field. This article summarizes heavy metal and salt toxicity to plants and the potential impacts of AMF in both of these forms of toxicity. Currently, the main constraint on applications of AMF is the inability to grow them without the need for a symbiotic partner.

Keywords

Heavy Metal Arbuscular Mycorrhizal Fungus Salt Marsh Suppression Subtractive Hybridization Arbuscular Mycorrhizal Fungus Colonization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anderson CWN, Brooks RR, Chiarucci A, La Coste CJ, Leblanc M, Robinson BH, Simcock R, Stewart RB (1999) Phytomining for nickel, thalium and gold. J Geochemical Exploration 67:407–415CrossRefGoogle Scholar
  2. Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581:247–254CrossRefGoogle Scholar
  3. Bécard G, Fortin JA (1988) Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA-transformed roots. New Phytol 108:211–218CrossRefGoogle Scholar
  4. Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EAH (2003) Analysis of transgenic Indian Mustard plants for phytoremediation of metal-contaminated tailings. J Environ Qual 32:432–440PubMedCrossRefGoogle Scholar
  5. Boominathan R, Saha-Chaudhury NM, Sahajwall V, Doran PM (2004) Production of nickel bio-ore from hyperaccumulator plant biomass: applications in phytomining. Biotechnol Bioeng 86:243–250PubMedCrossRefGoogle Scholar
  6. Börstler B, Renker C, Kahmen A, Buscot F (2006) Species composition of arbuscular mycorrhizal fungi in two mountain meadows with differing management types and levels of plant biodiversity. Biol Fertil Soils 42:286–298CrossRefGoogle Scholar
  7. Brewer EP, Saunders JA, Angle JS, Chaney RL, McIntosh MS (1999) Somatic hybridization between the zinc accumulator Thlaspi caerulenscens and Brassica napus. Theor Appl Genet 99:761–771CrossRefGoogle Scholar
  8. Brooks RR (1998) Plants that hyperaccumulate heavy metals. CABI Publishing, WallingfordGoogle Scholar
  9. Brooks RR, Yang X-H (1984) Elemental levels and relationships in the endemic serpentine flora of the Great Dyke, Zimbabwe, and their significance as controlling factors for the flora. Taxon 33:392–399CrossRefGoogle Scholar
  10. Carvalho LM, Caçador I, Martins-Loução MA (2001) Temporal and spatial variation of arbuscular mycorrhizas in salt marsh plants of the Tagus estuary (Portugal). Mycorrhiza 11:303–309CrossRefGoogle Scholar
  11. Carvalho LM, Correia PM, Martins- Loução MA (2004) Arbuscular mycorrhizal fungal propagules in a salt marsh. Mycorrhiza 14:165–170PubMedCrossRefGoogle Scholar
  12. Dahmani-Muller H, van Ort F, Gelie B, Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environmental Pollution 109:231–238PubMedCrossRefGoogle Scholar
  13. De Mars BG, Boerner REJ (1996) Vesicular arbuscular mycorrhizal development in the Brassicaceae in relation to plant life span. Flora 191:179–189Google Scholar
  14. Elstner EF (1990) Der Sauerstoff, Biochemie, Biologie. Medizin, vol. BI- Wissenschaftsverlag, Mannheim, Wien ZürichGoogle Scholar
  15. Ernst WHO (2005) Phytoextraction of mine wastes-options and impossibilities. Chemie der Erde 65:29–42CrossRefGoogle Scholar
  16. Ernst WHO, Krauss GJ, Verkleij JAC, Wesenberg D (2008) Interaction of heavy metals with sulphur metabolism in angiosperms from an ecological point of view. Plant Cell Environ 31:123–143PubMedGoogle Scholar
  17. Füzy A, Biro B, Toth T, Hildebrandt U, Bothe H (2008) Drought, but not salinity determines the apparent effectiveness of halophytes colonized by arbuscular mycorrhizal fungi. J Plant Physiology 165:1181–1192Google Scholar
  18. Gonzales-Guerrero M, Azcon-Aguilar C, Mooney M, Valderas A, MacDarmid CW, Eide DJ, Ferrol N (2005) Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genet Biol 42:130–140CrossRefGoogle Scholar
  19. Gonzales-Guerrero M, Cano C, Azcon-Aguilar C, Ferrol N (2007) GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress. Mycorrhiza 17:327–335CrossRefGoogle Scholar
  20. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exper Botany 53:1–11CrossRefGoogle Scholar
  21. Hildebrandt U, Kaldorf M, Bothe H (1999) The zinc violet and its colonisation by arbuscular mycorrhizal fungi. J Plant Physiol 154:709–717Google Scholar
  22. Hildebrandt U, Janetta K, Ouziad F, Renne B, Nawrath K, Bothe H (2001) Arbuscular mycorrhizal colonization of halophytes in Central European salt marshes. Mycorrhiza 10:175–183CrossRefGoogle Scholar
  23. Hildebrandt U, Hoef-Emden K, Backhausen S, Bothe H, Bozek M, Siuta A, Kuta E (2006a) The rare endemic zinc violets of Central Europe originate from Viola lutea Huds. Plant Syst Evol 257:205–222CrossRefGoogle Scholar
  24. Hildebrandt U, Ouziad F, Marner FJ, Bothe H (2006b) The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol Lett 254:258–267PubMedCrossRefGoogle Scholar
  25. Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146PubMedCrossRefGoogle Scholar
  26. Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fert Soils 37:1–16Google Scholar
  27. Jentschke G, Godbold DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109:107–116CrossRefGoogle Scholar
  28. Juniper S, Abbott LK (1993) Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza 4:45–47CrossRefGoogle Scholar
  29. Juniper S, Abbott LK (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16:371–379PubMedCrossRefGoogle Scholar
  30. Kaldorf MO, Kuhn AJ, Schröder WH, Hildebrandt U, Bothe H (1999) Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol 154:718–728Google Scholar
  31. Klingner A, Bothe H, Wray V, Marner FJ (1995) Identification of a yellow pigment formed in maize roots upon mycorrhizal colonization. Phytochemistry 38:53–55CrossRefGoogle Scholar
  32. Landwehr M, Hildebrandt U, Wilde P, Nawrath K, Tóth T, Biro B, Bothe H (2002) The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils. Mycorrhiza 12:199–211PubMedCrossRefGoogle Scholar
  33. Lanfranco L, Bolchi A, Ros EC, Ottonello S, Bonfante P (2002) Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiol 130:58–67PubMedCrossRefGoogle Scholar
  34. Leyval C, Turnau K, Haselwandter K (1997) The effect of heavy metal pollution on mycorrhizal colonization and function, physiological, ecological and applied aspects. Mycorrhiza 7:159–163CrossRefGoogle Scholar
  35. Ma LQ, KK M, Tu C, Zhang W, Cai Y, Kennelly ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579–579PubMedCrossRefGoogle Scholar
  36. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, LondonGoogle Scholar
  37. Megharaj M, Ragusa SR, Naidu R (2002) Metal-algae interactions: implications of bioavailability. In: Naidu R et al (eds) Bioavailability, toxicity and risk relationships in ecosystems. Science Publishers, Inc., Enfield, USAGoogle Scholar
  38. Nauenburg JD (1986) Untersuchungen zur Variabilität, Ökologie und Systematik der Viola tricolor -Gruppe in Mitteleuropa, Thesis, The University of Göttingen, Germany, p. 126Google Scholar
  39. Orłowska E, Zubek S, Jurkiewicz A, Szarek-Lukaszewska G, Turnau K (2002) Influence of restoration on arbuscular mycorrhiza of Biscutella laevigata L. (Brassicaceae) and Plantago lanceolata L. (Plantaginaceae) from calamine spoil mounds. Mycorrhiza 12:153–160PubMedCrossRefGoogle Scholar
  40. Orłowska E, Ryszka P, Jurkiewicz A, Turnau K (2005) Effectiveness of arbuscularmycorrhizal fungal (AMF) strains in colonisation of plants involved in phytostabilization of zinc wastes. Geoderma 129:92–98CrossRefGoogle Scholar
  41. Orłowska E, Mesjasz-Przybylowicz J, Przybylowicz W, Turnau K (2008) Nuclear microprobe studies of elemental distribution in mycorrhizal and nonmycorrhizal roots of Ni-hyperaccumulator Berkheya coddii. X-Ray Spectrom 37:129–132CrossRefGoogle Scholar
  42. Ouziad F, Hildebrandt U, Schmelzer E, Bothe H (2005) Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162:634–649PubMedCrossRefGoogle Scholar
  43. Ouziad F, Wilde P, Schmelzer E, Hildebrandt U, Bothe H (2006) Analysis of expression of aquaporins and Na+/H+ transporters in tomato colonized by arbuscular mycorrhizal fungi and affected by salt stress. Envir Exp Bot 57:177–186CrossRefGoogle Scholar
  44. Patzke W, Brown G (1990) Festua aequisgranensis sp. nova ein neuer Vertreter der Kollektivart Festuca ovina L. Decheniana 143:194–195Google Scholar
  45. Pongrac P, Vogel-Mikuš K, Kump P, Necemer M, Tolra R, Poschenrieder C, Barcelo J, Regvar M (2007) Changes in elemental uptake and arbuscular mycorrhizal colonization during the life cycle of Thlaspi praecox Wulfen. Chemosphere 69:1602–1609PubMedCrossRefGoogle Scholar
  46. Prasad MNV, de Oliveira-Freitas HM (1999) Feasible biotechnological and bioremediation strategies for serpentine soils and mine spoils. Electron J Biotechnol 15th April 1999 http://www.ejbiotechnology.info/content/vol2/issue1/index.html
  47. Prasad MNV, Hagemeyer JE (1999) Heavy metal stress in plants-from molecules to ecosystems. New York, BerlinGoogle Scholar
  48. Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921PubMedCrossRefGoogle Scholar
  49. Regvar M, Vogel-Mikuš K (2008) Recent advances in understanding of plant responses to excess metals: exposure, accumulation and tolerance. In: Kahn NA, Singh S, Umar S (eds) Sulphur assimilation and abiotic stress in plants. Springer, New YorkGoogle Scholar
  50. Regvar M, Vogel-Mikuš K, Kugonic N, Turk B, Batic F (2006) Vegetational and mycorrhizal successions at a metal polluted site: Indications for the direction of phytostabilisation? Environ Pollut 144:976–984PubMedCrossRefGoogle Scholar
  51. Rivera-Becerril F, Calantzis F, Turnau K, Caussanel J-P, Belimov AA, Gianinazzi S, Strasser RJ, Gianinazzi-Pearson V (2002) Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot 53:177–1185CrossRefGoogle Scholar
  52. Robinson RH, Lombi E, Zhao FJ, McGrath SP (2003) Uptake and distribution of nickel and other metals in the hyperaccumulator Berkeya coddii. New Phytologist 158:279–285CrossRefGoogle Scholar
  53. Ryszka P, Turnau K (2007) Arbuscular mycorrhiza of introduced and native grasses colonizing zinc wastes: Implications for restoration practices. Plant and Soil 298:219–229CrossRefGoogle Scholar
  54. Salt D (2001) Responses and adaptations of plants to metal stress. In: Hawkesford MJ, Buchner P (eds) Molecular analysis of plant adaptation to the environment. Kluyer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  55. Sanità di Toppi L, Prasad MNV, Ottonello S (2002) Metal chelating peptides and proteins in plants. In: Prasad MNV, Strzalka K (eds) Physiology and biochemistry of metal toxicity in plants. Kluyver Academic Publishers, Dordrecht, NLGoogle Scholar
  56. Scheloske S, Maetz M, Schneider T, Hildebrandt U, Bothe H, Povh H (2004) Element distribution in mycorrhizal and nonmycorrhizal roots of the halophyte Aster tripolium determined by proton induced X-ray emission. Protoplasma 223:183–189PubMedCrossRefGoogle Scholar
  57. Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota:phylogeny and evolution. Mycol Res 105:1413–1421CrossRefGoogle Scholar
  58. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, vol Academic Press. San Diego, USAGoogle Scholar
  59. Stocker O (1928) Das Halophytenproblem. Springer, BerlinGoogle Scholar
  60. Strzyszcz Z (2003) Some problems of the reclamation of waste heaps of zinc and lead ore exploitation in southern Poland. Z Geol Wissenschaft 32:167–173Google Scholar
  61. Sudova R, Jurkiewicz A, Turnau K, Vosatka M (2007) Persistence of heavy metal tolerance of the arbuscular mycorrhizal fungus Glomus intraradices under different cultivation regimes. Symbiosis 43:71–81Google Scholar
  62. Sutcliffe JF, Baker DA (1974) Plants and mineral salts. Studies in Biology. vol 48, Edward Arnold, SouthamptonGoogle Scholar
  63. Tonin C, Vandenkoornhuyse P, Joner EJ, Strczek J, Leyval C (2001) Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza 10:161–168CrossRefGoogle Scholar
  64. Trouvelot A, Kough JL, GianinazziV (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae, vol INRA, ISBN:2-85340-774-8, Paris, p 217-221Google Scholar
  65. Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultarmafic soils in South Africa. Mycorrhiza 13:185–190PubMedCrossRefGoogle Scholar
  66. Turnau K, Jurkiewicz A, Lingua JM, Barea JM, Gianinazzi-Pearson V (2006a) Role of arbuscular mycorrhiza and associated microorganisms in phytoremediation of heavy metal polluted sites. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment: biogeochemistry, biotechnology, and bioremediation. CRC Press, Baton Rouge, pp 235–252Google Scholar
  67. Turnau K, Orłowska E, Ryszka P, Zubek SZ, Anielska T, Gawroński S, Jurkiewicz A (2006b) Role of mycorrhizal fungi in phytoremediation and toxicity monitoring of heavy metal rich industrial wastes in southern Poland. In: Twardowska I, Allen HE, Häggblom MM (eds) Soil and water pollution monitoring, protection and remediation. Springer, New York, pp 533–551CrossRefGoogle Scholar
  68. Turnau K, Henriques FS, Anieska T, Renker C, Buscot F (2007) Metal uptake and detoxification mechanisms in Erica andevalensis growing in a pyrite mine tailing. Envir Exper Botany 61:117–123CrossRefGoogle Scholar
  69. Turnau K, Anielska T, Ryszka P, Gawroński S, Ostachowicz B, Jurkiewicz A (2008) Establishment of arbuscular mycorrhizal plants originating from xerothermic grasslands on heavy metal rich industrial wastes - new solution for waste revegetation. Plant and Soil 305:267–280CrossRefGoogle Scholar
  70. Vogel-Mikuš K, Regvar M (2006) Arbuscular mycorrhiza as a tolerance strategy in metal contaminated soils:prospects in phytoremediation. In: Rodes D (ed) New topics in environmental research. Nova Science Publishers, Hauppauge, N.YGoogle Scholar
  71. Vogel-Mikuš K, Drobne D, Regvar M (2005) Zn, Cd and Pb accumulation and arbuscular mycorrhiza colonization of pennycress Thlaspi praecox Wulf. from the vicinity of a lead mine and smelter in Slovenia. Environ Pollution 133:233–242CrossRefGoogle Scholar
  72. Vogel-Mikuš K, Pongrac P, Kump P, Necemer M, Regvar M (2006) Colonization of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal mixture induces changes in heavy metal and nutrient uptake. Environ Pollut 139:362–371PubMedCrossRefGoogle Scholar
  73. Vogel-Mikuš K, Pongrac P, Pelicon P, Vapetic P, Povh B, Bothe H, Regvar M (2009) Micro-PIXE analysis for localisation and quantification of elements in roots of mycorrhizal metaltolerant plants. In: Varma A, Kharkwal A (eds) Symbiotic fungus: principles and practice. Springer, New YorkGoogle Scholar
  74. Weissenhorn I, Leyval C (1993) Cd-tolerant arbuscular mycorrhizal (AM) fungi from heavy- metal polluted soils. Plant Soil 157:247–256CrossRefGoogle Scholar
  75. Weissenhorn I, Leyval C (1995) Root colonization of maize by a Cd-sensitive and a Cd- tolerant Glomus mosseae and Cadmium uptake in sand culture. Plant Soil 175:233–238CrossRefGoogle Scholar
  76. Wierzbicka M, Panufnik D (1998) The adaptation of Silene vulgaris to growth on a calamine waste heap (S. Poland). Environ Pollution 101:415–426CrossRefGoogle Scholar
  77. Wierzbicka M, Pielichowska M (2004) Adaptation of Biscutella laevigata L., a metal hyperaccumulator, to growth on zinc-lead waste heap in southern Poland. Chemosphere 54:1663–1674PubMedCrossRefGoogle Scholar
  78. Wilde P, Manal A, Stodden M, Sieverding E, Hildebrandt U, Bothe H (2009) Biodiversity of arbuscular mycorrhizal fungi in two salt marshes. Environmental Microbiology 11:1548–1561Google Scholar
  79. Yamaguchi T, Blumwald E (2005) Developing salt-tolerant plants: challenges and opportunities. Trends Plant Sci 10:615–620PubMedCrossRefGoogle Scholar
  80. Zalẹcka F, Wierzbicka M (2002) The adaptation of Dianthus carthusianorum L. (Caryophyllaceae) to growth on a zinc-lead heap in southern Poland. Plant Soil 246:249–257CrossRefGoogle Scholar
  81. Zhang J, Shu WS (2006) Mechanisms of heavy metal cadmium tolerance in plants. J Plant Physiol Mol Biol 32:1–8Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hermann Bothe
    • 1
  • Marjana Regvar
    • 2
  • Katarzyna Turnau
    • 3
  1. 1.Botanical InstituteThe University of CologneCologneGermany
  2. 2.Department of BiologyUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Department of Ecological Microbiology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland

Personalised recommendations