Skip to main content

Generalized Self-Organizing Mixture Autoregressive Model

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5629))

Abstract

The self-organizing mixture autoregressive (SOMAR) model regards a time series as a mixture of regressive processes. A self-organizing algorithm is used with the LMS algorithm to learn the parameters of these regressive models. The self-organizing map is used to simplify the mixture as a winner-take-all selection of local models, combined with an autocorrelation coefficient based measure as the similarity measure for identifying correct local models. The SOMAR has been shown previously being able to uncover underlying autoregressive processes from a mixture. This paper proposes a generalized SOMAR that fully considers the mixing mechanism and individual model variances that make modeling and prediction more accurate for non-stationary time series. Experiments on both benchmark and financial time series are presented. The results demonstrate the superiority of the proposed method over other time-series modeling techniques on a range of performance measures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allinson, N.M., Yin, H.: Interactive and semantic data visualization using self-organizing maps. In: Proc. IEE Colloquium on Neural Networks in Interactive Multimedia Systems (1998)

    Google Scholar 

  2. Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31, 307–327 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Box, G., Jenkins, G.: Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco (1970)

    MATH  Google Scholar 

  4. Cao, L.J.: Support vector machines experts for time series forecasting. Neurocomputing 51, 321–339 (2002)

    Article  Google Scholar 

  5. Chen, S., Billings, S.A., Cowen, C.F.N., Grant, P.M.: Practical identification of NARMAX models using radial basis functions. Int. Journal of Control 52, 1327–1350 (1990)

    Article  MATH  Google Scholar 

  6. Dablemont, S., Simon, G., Lendasse, A., Ruttiens, A., Blayo, F., Verleysen, M.: Time series forecasting with SOM and local non-linear models – Application to the DAX30 index prediction. In: Proc. of WSOM 2003, pp. 340–345 (2003)

    Google Scholar 

  7. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  8. Enders, W.: Applied Econometric Time Series, 2nd edn. John Wiley & Sons, Chichester (2004)

    Google Scholar 

  9. Haykin, S.: Neural Networks – A Comprehensive Foundation, 2nd edn. Prentice-Hall, Englewood Cliffs (1998)

    MATH  Google Scholar 

  10. Koskela, T.: Time Series Prediction Using Recurrent SOM with Local Linear Models. Helsinki University of Technology (2001)

    Google Scholar 

  11. Lampinen, J., Oja, E.: Self-organizing maps for spatial and temporal AR models. In: Proc. of 6th SCIA Scandinavian Conference on Image Analysis, Helsinki, Finland, pp. 120–127 (1989)

    Google Scholar 

  12. Martinetz, T., Berkovich, S., Schulten, K.: Neural-gas network for vector quantization and its application to time-series prediction. IEEE Trans. Neural Networks 4, 558–569 (1993)

    Article  Google Scholar 

  13. Ni, H., Yin, H.: Time-series prediction using self-organizing mixture autoregressive network. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 1000–1009. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Ni, H., Yin, H.: Self-organizing mixture autoregressive model for non-stationary time series modeling. International Journal of Neural Systems 18, 469–480 (2008)

    Article  Google Scholar 

  15. Strickert, M., Hammer, B.: Merge SOM for temporal data. Neurocomputing 64, 39–72 (2005)

    Article  Google Scholar 

  16. Voegtlin, T., Dominey, P.F.: Recursive self-organizing maps. Neural Networks 15, 979–991 (2002)

    Article  MATH  Google Scholar 

  17. Wong, C.S., Li, W.K.: On a mixture autoregressive model. Journal of the Royal Statistical Society, Series B (Statistical Methodology), Part1 62, 95–115 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Yin, H., Allinson, N.M.: Self-organizing mixture networks for probability density estimation. IEEE Trans. on Neural Networks 12, 405–411 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yin, H., Ni, H. (2009). Generalized Self-Organizing Mixture Autoregressive Model. In: Príncipe, J.C., Miikkulainen, R. (eds) Advances in Self-Organizing Maps. WSOM 2009. Lecture Notes in Computer Science, vol 5629. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02397-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02397-2_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02396-5

  • Online ISBN: 978-3-642-02397-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics